APPROXIMATE INFERENCE FOR
DETERMINANTAL POINT PROCESSES

Jennifer Gillenwater
A DISSERTATION
in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2014

Ben Taskar, Associate Professor of Computer and Information Science
Supervisor of Dissertation

Emily Fox, Adjunct Professor of Computer and Information Science
Co-Supervisor of Dissertation

Lyle Ungar, Professor of Computer and Information Science
Graduate Group Chairperson

Dissertation Committee:

Michael Kearns, Professor of Computer and Information Science

Ali Jadbabaie, Professor of Electrical and Systems Engineering

Alexander Rakhlin, Assistant Professor of Statistics

Jeft Bilmes, Professor of Electrical Engineering, Univeristy of Washington



APPROXIMATE INFERENCE FOR
DETERMINANTAL POINT PROCESSES

COPYRIGHT

2014

Jennifer Gillenwater

Licensed under a Creative Commons Attribution-ShareAlike 4.0 License.
To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/4.0/


http://creativecommons.org/licenses/by-sa/4.0/

Acknowledgments

I would first like to thank my advisor, Ben Taskar: for his hundreds of “how’s it
going?” emails that catalyzed the best conversations of my graduate career; for his
prescient advice that worked miracles on our experiments; for his uncanny ability
to warp whatever time was left before a deadline into enough time to write a paper.
I am deeply grateful to Emily Fox for so generously stepping in to fill Ben’s shoes
this past year. Further, I am indebted to my committee chair, Michael Kearns, and
to my committee members, Ali Jadbabaie, Sasha Rakhlin, and Jeff Bilmes for their
guidance and insights that helped to shape this document. I would also like to offer
thanks to my friends for their great support: to Alex Kulesza for leading countless
trips to the water cooler and sharing with me his dependably profound perceptions
(DPPs); to Kuzman Ganchev and Joao Graga for getting me started at Penn with
good PR work; to David Weiss for his energetic co-TAing; to Ben Sapp for running
Ben’s Union of Grad Students (BUGS); to Emily Pitler and Annie Louis for being my
academic big sisters; to Partha Talukdar, Kayhan Batmanghelich, Katie Gibson, Alex
Roederer, Andrew King, Luheng He, and many others for more than I can say here.
Additionally, I owe a lot to my family: my brother, who keeps me informed about
what is “cool”; my sister, who made it through my entire defense without napping;
my dad, who houses Razzle, the World’s Greatest Dog, and who is (really) the World’s
Greatest Dad. Finally, I want to thank Arjun, who has been my companion on so

many recent adventures, and with whom I hope to share many more.

il



ABSTRACT

APPROXIMATE INFERENCE FOR DETERMINANTAL POINT PROCESSES
Jennifer Gillenwater
Ben Taskar
Emily Fox

In this thesis we explore a probabilistic model that is well-suited to a variety
of subset selection tasks: the determinantal point process (DPP). DPPs were origi-
nally developed in the physics community to describe the repulsive interactions of
fermions. More recently, they have been applied to machine learning problems such
as search diversification and document summarization, which can be cast as subset
selection tasks. A challenge, however, is scaling such DPP-based methods to the size
of the datasets of interest to this community, and developing approximations for
DPP inference tasks whose exact computation is prohibitively expensive.

A DPP defines a probability distribution over all subsets of a ground set of items.
Consider the inference tasks common to probabilistic models, which include nor-
malizing, marginalizing, conditioning, sampling, estimating the mode, and maxi-
mizing likelihood. For DPPs, exactly computing the quantities necessary for the
first four of these tasks requires time cubic in the number of items or features of
the items. In this thesis, we propose a means of making these four tasks tractable
even in the realm where the number of items and the number of features is large.
Specifically, we analyze the impact of randomly projecting the features down to a
lower-dimensional space and show that the variational distance between the result-
ing DPP and the original is bounded. In addition to expanding the circumstances in
which these first four tasks are tractable, we also tackle the other two tasks, the first
of which is known to be NP-hard (with no PTAS) and the second of which is conjec-
tured to be NP-hard. For mode estimation, we build on submodular maximization
techniques to develop an algorithm with a multiplicative approximation guarantee.
For likelihood maximization, we exploit the generative process associated with DPP
sampling to derive an expectation-maximization (EM) algorithm. We experimen-
tally verify the practicality of all the techniques that we develop, testing them on
applications such as news and research summarization, political candidate compar-

ison, and product recommendation.

iv



Contents

Acknowledgements iii
Abstract iv
List of Tables ix
List of Figures xi
List of Algorithms xii
1 Introduction 1
1.1 Motivating subset selection applications . . . . .. ... ... ... 2

1.2 Expressing set-goodness as a determinant . . . .. ... ... ... 5

1.3 DefinitionofaDPP . . . . . . . . .. .. . .. 7

1.4 Motivating DPP inference tasks . . . .. ... ... ... .. .. 8

1.5 ‘Thesis contributions . . . . . . . . . .. e 10

2 DPP Basics 13
2.1 Geometric interpretation . . . . ... ... oL 13

2.2 Inference . . . . . . . . e 15
22,1 Normalizing . ... ... ... ... .. ... .. ... 15



222 Marginalizing . . . .. ... L oo 17

223 Conditioning . . . . ... . L Lo 19
224 Sampling . . ... 22
225 MAPestimation . ... ... ... ... 27
2.2.6  Likelihood maximization . ... .............. 29
2.2.7 Maximizingentropy . . . . ... ... 30
2.2.8 Computing expectations . . . . . . . . . .. ... ... 30
23 Closure . . . . vt 32
2.4 Dual representation . . . . .. ... Lo o 33
2.4.1 Normalizing . ... ... ... ... .. .. ... .. ... 34
242 Marginalizing . . . . ... L Lo L 34
243 Conditioning . . . . ... ... o 34
244 Sampling . ... L L o 35
2.5 Quality-similarity decomposition . . . ... ... ... ... ... 37
DPP Variants 39
3.1 Cardinality-constrained DPPs . . . . . ... ... ... .. ..., 39
32 Structured DPPs. . . . ... . 42
33 MarkovDPPs . .. ... 44
34 Continuous DPPs . . . .. ... ... L oo 46
Dimensionality Reduction 48
4.1 Random projections . . . . . ... ... 49
42 Threading k-SDPPs . . . . . .. ... .. .. ... 52
4.3 Toy example: geographical paths . . . . . ... ... ... .... 54
4.4  'Threading document collections . . . . ... .. ... ... .... 56
44.1 Relatedwork . ... ... . o L 58
442 Setup ... 59
443 Academiccitationdata . . . . ... ... L. 61
444 Newsarticles . . ... .. ... ... .. ... 61
4.5 Related random projectionswork . . .. ... oL L. 69
4.6 Related DPPwork. . ... ... ... .. ... .. ... ... ... 72
4.6.1 MCMCsampling . .. ....... .. ... ..... 73

vi



4.6.2 NystrOm approximation . . . . . . ... .. .. ... ... 76

5 MAP estimation 84
5.1 Definition of submodularity . .. ... ... ... ... ... ... 86
5.2 Log-submodularityofdet . . . . .. ... ... ... .. .. ... 87
5.3 Submodular maximization . .. ... ... ... .. . L. 89

5.3.1 Monotone [ . . . .. e 89
5.3.2 Non-monotone f . . . ... 91
5.3.3 Constrained f . . ... ... . . . . 93
5.4 Polytope constraints . . . . ... ... L L Lo 94
5.5  Softmax extension . . . . . . .. ... e e 95
5.5.1  Softmax maximization algorithms. . . . . ... ... ... 99
5.5.2  Softmax approximation bound . . .. ... ... ... .. 101
553 Rounding . ... ... .. ... ... L L 104
5.6 Experiments . . . ... ... ... 106
5.6.1 Syntheticdata . ... ... ... ... .. .. L. 107
5.6.2 Dolitical candidate comparison . . .. ... ... ... .. 109
5.7 Model combination . . . .. ... L L L oo 111

6 Likelihood maximization 112
6.1 Alternatives to maximizing likelihood . . . . ... ... ... ... 113
6.2 Feature representation . . . . . . . . .. ... ... 116
6.3 Concave likelihood-based objectives . . . . .. ... ... .. ... 117
6.4 Non-concave likelihood-based objectives . . . .. ... ... ... 120
6.5 MCMC approach for parametric kernels . . . . ... ... ... 121
6.6 EM approach for unrestricted kernels . . . . .. ... . oL 123

6.6.1 DProjected gradientascent . . ... ... ... ... .... 123
6.6.2 Eigendecomposing . . . . . ... ... L L 125
6.6.3 Lower bounding the objective . . . . . ... ... ... .. 126
6.64 E-step . ... 127
6.6.5 M-step eigenvalueupdates . . . . . ... ... 129
6.6.6  M-step eigenvector updates . . . . ... 130
6.7 Experiments . . .. .. ... .. ... 134

vii



6.7.1 Baby registry tests

......................

6.7.2  Exponentiated gradient

...................

7  Conclusion

7.1 Future work

..............................

viii



2.1
2.2

4.1
4.2
4.3

6.1
6.2

List of Tables

Complexity of inference . . . . . . .. ... ... .. L ... 16
Kernel conditioning formulas. . . .. ... ... ... ... ... 20
News timelines automatic evaluation . . .. .. .. .. .. .... 68
News timelines Mechanical Turk evaluation . . . .. .. .. .... 69
News timeline runtimes . . . . . . v v v v v v e e e e e 69
Baby registry datasetsizes . . . .. ... ... L L 135
Baby registry EM evaluation . . ... ... ... ... .. .. ... 138

ix



1.1
1.2
1.3

2.1
3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3

List of Figures

DPP product recommendations . . . . .. ... ... ... 2
Geometry of determinants . . . . ... ... ... L. 6
Sampling/MAP for points in the plane . . . ... ... ... ... 10
DPP sampling algorithms . . . . . .. ... ... . oL 24
Example structured DPP sample . . . . . ... ... . ... 42
Geographical path samples . . . . ... .. ... .. ... .. ... 54
Fidelity of random projections . . . . .. ... ... ... ..... 55
Document threading framework . . . . ... ... ... ... ... 56
Random projection of a single vector . . . . ... ... ... ... 57
Coracitationthreads . . .. ... ... ... .. ... .. ..... 62
News graph visualization . . . . ... ... ... ... .. ..... 64
k-SDPP news timelines . . . . .. ... ... .. .. ... .. 66
DTM news timelines . . . . ... ... ... .. ..... 67
News timeline Mechanical Turk task . . . . . ... ... ... ... 70
Det log-submodularity in 2-3 dimensions . . . . . ... ... ... 87
Symmetric greedy algorithms . . . . . .. ... ..o L 93
Matching matroid polytope example . . . . .. ... ... ... .. 96



5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4

Softmax upper-bounding multilinear . . . .. ... ... .. ... 98

Concave softmax cross-sections . . . . . . . . . v v v v v v v e 102
Synthetic MAP results. . . . . . . ... . oo 107
Political candidate comparison resules . . . . ... ... ... L. 109
Kernel learning algorithms . . . . .. ... ... ... ... 125
Baby registry EM evaluation . . ... ... ... ... ... ... 137
EM product recommendations . . . . .. ... ... 139
EM runtime evaluation . . . . ... ... ... ... .. .. ..., 140

xi



O 00 I &\ N AW N~

[ —
— O

—_
[\

List of Algorithms

O(NK*) DPP Sampling . . . ... .. ... .. .. ... .. 24
O(Nk?*) DPP Sampling . . . ... ... .. . ... .. ... 24
Dual DPP Sampling. . . . . ... ... .. oL 37
Nystrom-based Dual DPP Sampling . . . . . .. ... .. ... .. 81
GREEDY for DPPMAP . . ... . .. . . . . . ... 89
RANDOMIZED-SYMMETRIC-GREEDY for DPP MAP . . . .. ... .. 93
SYMMETRIC-GREEDY for DPPMAP . . . . . .. ... ... ... .. 93
CcOND-GRAD (Frank-Wolfe) . . . ... ... ... .. ... ..... 100
SOFTMAX-OPT for DPPMAP . . . ... ... ... ... ...... 100
CONSTRAINED-GREEDY for DPPMAP . . . ... ... ... .. .. 109
Projected gradient for DPP learning . . . . .. ... .. ... ... 125
Expectation-Maximization for DPP learning . . . ... ... ... 125

xii



Introduction

When there is a mismatch between the quantity of a resource available and con-
sumer capacity, mechanisms for selecting a subset of the overlarge group are often
invoked. For example: for a limited number of job openings, there may be an exces-
sive number of applicants, or, for a camping expedition, there may be more supplies
available than a camper can fit in his backpack. Moreover, as the amount of in-
formation readily available to us via electronic resources grows, we are increasingly
facing this type of dilemma in the setting where the overlarge group is a form of
information. For this reason, summarization mechanisms are becoming more and
more important for paring information down to manageable portions that human
(and machine) learners can easily digest. Subset selection is one elementary way of
formalizing the summarization task.

In general, across a wide variety of practical applications, for the task of correcting
disparities between resources and consumers, not only has subset selection been the
fundamental approach, but also it happens that desirable subsets share two basic
characteristics: a good subset is one whose individual items are all high-quality, but
also all distinct. For instance, in the case of filling a set of job openings on a team,

one might want to select applicants with high GPAs, but with diverse academic



majors, so as to have a variety of informed perspectives on the company’s projects.
The ability to balance the dual goals of quality and diversity is at the core of most

effective subset selection methods.

I.I MOTIVATING SUBSET SELECTION APPLICATIONS

To give additional insight into situations where such subsets are desired, we list here

examples of how common applications are typically cast in the subset selection mold:

* Product recommendation (McSherry, 2002; Gillenwater, Kulesza, Fox, and
Taskar, 2014): For retailers with a large inventory, selecting a good subset of
products to recommend to a given customer is important not only for boosting
revenue, but also for saving the customer time. In this setting, a good subset
should contain products that other customers have rated highly, but should
also exhibit diversity—if a customer already has a carseat in their cart, they
most likely will not buy an additional carseat, no matter how popular it is
with other consumers. Figure 1.1 illustrates the type of product diversity that

a determinantal point process (DPP) can achieve.

Graco Sweet Slumber  Boppy Noggin Nest Cloud b Twilight Braun ThermoScan Aquatopia Bath
Sound Machine Head Support Constellation Night Light Lens Filters Thermometer Alarm

‘.
S
I\

/

O (@)
Britax EZ-Cling TL Care Organic Regalo Easy Step VTech Comm. Infant Optics
Sun Shades Cotton Mittens Walk Thru Gate Audio Monitor Video Monitor

Figure 1.1: A set of 10 baby safety products selected using a DPP.

* Document summarization (Lin and Bilmes, 2012; Kulesza and Taskar,
2012): Given a set of documents consisting of a total of N sentences, con-

sider the problem of selecting a subset of the sentences to summarize the core

2



content of the documents. There are many variations on this task, including
some where the ground set consists of N structures, rather than just simple

sentences; see for example the news threading application in Chapter 4.

* Web search (Kulesza and Taskar, 2011a): Given a large number of images or
documents, consider the problem of selecting a subset that are relevant to a
user query. Note that diversity is important in this setting as many queries are
ambiguous (e.g. the search “jaguars” could refer to the cats, the cars, or the

football team).

* Social network marketing (Hartline, Mirrokni, and Sundararajan, 2008):
Consider a social network consisting of N people. Suppose a seller has a digital
good that costs nothing to copy (unlimited supply). In this setting, a common
marketing strategy is “influence-and-exploit™: give the product to a subset of
the people for free, then offer it to the rest of the network at a price. Intu-
itively, the people who get the product for free should be high-degree nodes in
the network, but also spread out such that no one will be too many hops from

a product owner.

* Auction revenue maximization (Dughmi, Roughgarden, and Sundararajan,
2009): Given a base set of bidders, a pool of N potential bidders, and a budget
k, a common task is to recruit a subset of £ additional bidders for the auction.

This is sometimes called the “market expansion problem”.

* Sensor placement for Gaussian Processes (Krause, Singh, and Guestrin,
2008): Suppose there are N possible locations for sensors (e.g. for measuring
pressure, temperature, or pollution). For a given sensor budget, at most &
sensors can be placed. Thus, it is important to be able to select a subset of the
possible locations at which to actually place sensors, such that the measure-
ments from these sensors will be as informative as possible about the space as

a whole.

* Image segmentation (Kim, Xing, Fei-Fei, and Kanade, 2011): An initial step
in most image-manipulation software is to segment a given image into k parts

such that it is homogeneous within each part (e.g. separating an image into



“sky” and “earth” is a common task, with & = 2). The segmentation task can
be formulated as the problem of identifying one pixel (or superpixel) to serve as
the “center” for each segment. Thus, the segmentation task reduces to selecting

a size-k subset of an image’s N pixels.

* Pose tracking (Kulesza and Taskar, 2010): Consider the problem of identify-
ing the pixels corresponding to each person in a video. For each video frame,
a subset of the pixels must be chosen. Diversity is important in this setting
because people tend to occupy disjoint locations in space, so the goodness of

a subset tends to increase as its spatial diversity within a given frame increases.

* Network routing (Lee, Modiano, and Lee, 2010): Given the graph of a net-
work, suppose that each link (edge) has some failure probability. Consider
the problem of selecting a set of k paths from a source node to a target node
such that if a message is sent along all of these paths, failure to deliver (at least
one copy of) the message to the target is minimized. The best set of paths will
be high-quality (all links on paths will have low failure probability), but also
diverse (the failure of a link on one path should not hurt the other paths).

* Motion summarization (Affandi, Kulesza, Fox, and Taskar, 2013b): Given
videos consisting of individuals performing a specific activity, consider the task
of selecting a subset of the N video frames to summarize the activity. For
example, the main motions involved in an activity such as basketball can be
summarized by a few frames that are diverse in terms of the position of an

athlete’s limbs.

There are also several basic machine learning tasks that are sometimes cast as

subset selection problems:

* Clustering (Elhamifar, Sapiro, and Vidal, 2012; Reichart and Korhonen,
2013; Shah and Ghahramani, 2013; Kang, 2013): Given N data points, select
a subset of k& points to serve as cluster centers or as representatives of the overall

dataset.

* Dimensionality reduction (Guyon and Elisseeff, 2003): Given N features,

select a subset of k features to which to assign non-zero weight in a model.

4



The complexity of the tasks mentioned in this section is increased by the frequent
practical need for constraints on the selected subset, Y C {1,..., N}. These range
from relatively simple cardinality constraints (Y| < &, |Y| = k), to intersections of

multiple matroids. See Chapter 5 for additional discussion of subset constraints.

1.2 EXPRESSING SET-GOODNESS AS A DETERMINANT

Having established some motivation for solving subset selection problems where the
end goal is a high-quality but diverse set, in this section we consider basic measures
of quality and diversity that lead directly to the definition of a determinantal point
process (DPP).

Given N items, let item ¢ be represented by a D-dimensional feature vector B; €
RP*1, For example, in the case of document summarization each sentence is an item,
and D might be the size of the vocabulary. Each entry in B; could be a count of the
number of occurrences of the corresponding vocabulary word, normalized in some
reasonable manner. One simple way to interpret B; is to assume that its magnitude,
| Bill2, represents the quality of item ¢, and that its dot product with another item’s
feature vector, B, B;, corresponds to the similarity between these two items.

For sets of size 1, the goodness of a set can then reasonably be represented by
the quality of its only item, or any monotonic transformation of that quality. For
example, we could score each singleton set {i} according to its quality squared, || B; |3
In geometric terms, this is the squared length (1-dimensional volume) of B;. It is
also (trivially) the determinant of the 1 x 1 matrix B, B;.

As a measure of how good a set consisting of two items is, it is desirable to have
an expression that not only rewards high quality, but also penalizes similarity. Ex-
tending the geometric intuition from the singleton setting, for {i, j} the squared
area (2-dimensional volume) of the parallelogram spanned by B; and B; would be
a reasonable choice. See Figure 1.2 for an example. Theorem 1.1 establishes that
the expression for this squared area is: ||B;||3||B;||3 — (B B;j)?. The first term here
is the product of the items’ squared qualities and the second term is the square of
their similarity, so it is clear that this expression captures our stated goal of rewarding
quality while penalizing similarity.

Theorem 1.1. For vectors B;, B; € RP*Y, the area of the parallelogram with vertices 0,

5



feature space .

L4
. _ T ,
quality = \/B;' B; B, + B, ',".
similarity = B B; Py R
* U
O’ ,'
24
r ’
* .

Figure 1.2: The area of the parallelogram outlined by B; and B; corresponds to the
square root of the proposed set-goodness measure. Left: Reducing || B;|» corre-
sponds to reducing the quality of item j, hence making the set {7, j} less desirable.
Notice that the reduction in item quality produces a reduction in parallelogram area.
Right: Reducing the angle between B; and B; corresponds to making the items less
diverse, again making the set {i, j} less desirable. The parallelogram area is similarly
reduced in this case.

B;, Bj, and B; + B; is /| Bill3|| By[3 — (B B;)*.
Proof. See Section 2.1. ]

In addition to being related to area, this set-goodness formula can be expressed

as a determinant:

IBill5 B B; B!
' = det "B Bl | = Bil3lIBsll5 - (B B;)?. (1.1)
B'B; B3 B}

The geometric and determinantal formulas for size-1 and size-2 sets extend in
a fairly straightforward manner to sets of all sizes. Consider replacing length and
area with k-dimensional volume. For a set of size 3, this is the canonical notion of
volume. For larger sets, applying the standard “height x base” formula gives the

recursive definition:
vol(B) = || By |avol (projwlwm)) , (1.2)

6



where proj, , (-) projects to the subspace perpendicular to B;, and the subscript
Bs.n indexes all columns of B between 2 and N, inclusive. Theorem 1.2 establishes
that the square of this geometric formula is equal to the natural extension of Equa-

tion (1.1), the determinantal formula, to larger size sets: det(B' B) = vol(B)?.

Theorem 1.2. Given a D x N matrix B with N < D, consider the N-parallelotope
whose vertices are linear combinations of the N columns of B with weights in {0,1}:
V={uBi+...4+axBy | o € {0,1} Vi € {1,...,N}}. The volume of this N-

parallelotope is \/det(BT B).
Proof. See Section 2.1. O]

This basic extension of a natural set-goodness measure from size-1 and size-2 sets
to sets of arbitrary size brings us immediately to the definition of a determinantal

point process (DPP).

1.3 DEFINITION OF A DPP

The previous section informally defined a set-goodness score in terms of a feature
matrix B. Here we give a more rigorous definition.

At a high level, stochastic processes are generalizations of random vectors. Dis-
crete, finite stochastic processes are equivalent to random vectors: a sequence of
N random variables [Y;,...,Yy], associated with a joint probability distribution
P(Yi =y1,..., YN = yn). A discrete, finite point process is a type of discrete, finite
stochastic process where each variable is binary, y; € {0, 1}, indicating the occurrence
or non-occurrence of some event (e.g. neuron spike, lightening strike, inclusion of
a sentence in a summary). This thesis focuses on discrete, finite determinantal point
processes (DPPs), which are point processes where the occurrence of one event cor-
responds with a decrease in the probability of similar events. That is, these processes
exhibit repulsion between points, resulting in diversity.

Formally, let the points (sometimes referred to as events or items) under consid-
eration be those in the set Y = {1,2,..., N}. Let 2 refer to the set of all subsets
of Y, which has magnitude 2. This includes the empty set, 0, and the full set, Y.
We will frequently use Y C Y to denote one of these subsets, and Y to denote a



random variable whose value can be any Y C Y. According to Borodin and Rains
(2005), a random variable Y drawn according to a (discrete, finite) determinantal

point process Py, has value Y with probability:
PL(Y =Y) ocdet(Ly), (1.3)

for some positive semi-definite (PSD) matrix L € RV*Y. The Ly here denotes the

e It
1,j€Y
is assumed that det(Ly) = 1. In what follows, we will use the shorthand P (Y)) for

restriction of L to rows and columns indexed by elements of Y: Ly = [L;;]

P(Y =Y) where the meaning is clear.

Note that the definition given by Equation (1.3) is similar to the geometrically
motivated set-goodness score from Section 1.2, but with L in place of B" B. These
definitions are in fact equivalent. To see this, note that B" B can be any Gram matrix.
'The equivalence of the definitions then follows immediately from the equivalence of
the class of Gram matrices and the class of PSD matrices: every PSD matrix can
be written as the Gram matrix from some set of (potentially infinite dimensional)

vectors, and every Gram matrix is PSD.

1.4 MOTIVATING DPP INFERENCE TASKS

Having established the formal definition of a DPD, it is now possible to discuss
its associated inference problems and how each relates to the subset selection task.
Common inference operations include MAP estimation, sampling, marginalizing,

conditioning, likelihood maximization, and normalizing.

e MAP estimation: Finding the mode, or as it is sometimes referred to in con-
ditional models, maximum a posteriori (MAP) estimation, is the problem of
finding the highest-scoring set. This is the set for which the balanced mea-
sure of quality and diversity developed in Section 1.2 is highest. Clearly, this
is the inference operation we would ultimately like to perform for the subset
selection tasks from Section 1.1. Unfortunately, this problem corresponds to
volume maximization, which is known to be NP-hard. Thus, for the problem
of selecting the highest-scoring set under a DPP, we must rely on approxima-

tion algorithms.



e Sampling: Being able to sample from a DPP’s distribution is important for
a wide variety of tasks. These include estimating expected values and com-
bining DPPs with other probabilistic models to build novel generative stories.
Sampling is also one very simple way of approximating a DPP’s mode; since
higher-quality, more diverse sets have greater probability mass, we are more
likely to sample them. Even this simple MAP approximation technique can
often yield better sets than non-DPP-based subset selection methods.

e Marginalizing: Sampling algorithms, as well as several other MAP estimation
techniques, rely on the computation of marginal probabilities for efficiency.
More concretely, one of the first steps in a basic DPP sampling algorithm is
to estimate the marginal probability for each individual item i € Y. The first
item for the sample set is then selected with probability proportional to these

marginals.

* Conditioning: As with marginalization, being able to condition on the inclu-
sion of an item i € Y is important to the efficiency of sampling algorithms.
Independent of its use in sampling though, conditioning can easily be seen to
have practical importance. Recall for a moment the product recommendation
application from Section 1.1, and suppose that we are presented with a cus-
tomer who already has several items in their cart. To recommend additional

items, it makes sense to condition on the items already selected.

* Likelihood maximization: For some subset selection tasks appropriately-
weighted feature vectors are readily available and can be used to form a feature
matrix B, from which we can compute a DPP kernel L = B" B. However, in
most cases it is not known up front how important each feature is. Instead,
we often have access to indirect evidence of feature importance, in the form
of examples of “good” subsets. Leveraging this information to learn feature
weights, or to infer the entries of the kernel matrix L directly, can be done by
maximizing the likelihood of the “good” subsets. The result is a kernel that

can be used to find good subsets for related subset selection tasks.

e Normalizing: Being able to compute set goodness scores that all fall into the

[0, 1] range is useful for many probabilistic modeling tasks. For instance, nor-

9



2 .‘.‘:g.::" .:.30 o .0..:..0.. =.0 : o..: .' ".' ° .0.0. :.O.... ... o...o

0@ ..000: .000..0 o..: o °. ° %, .:o. ‘o:.'
T LR N KIS SR

.“ $°° ..’o : ..;% * .o.o.'..o. ° o0 .o:. .o... .o
) ° ° o

'0‘ ° .‘. ;. .‘ :‘ ° '... .. :o ° “:.. .: :0: .... o %o :
o7 o l’:’.;‘ * ..°‘ L/ °d :.:'..o ® oo ' .: : K

‘.’.‘ 0% %% Y ° D ° b *°e o Ky .o. S

All points Independent sample DPP sample DPP (approx) MAP

Figure 1.3: From left to right: A ground set of N points; sampling each point inde-
pendently with probability $; sampling from a DPP with a Gaussian kernel; applying
a DPP MAP approximation algorithm. The DPP sample exhibits greater diversity
than the independent sample, but the DPP MAP approximation is the most diverse.

malization makes it easy to compare two different DPPs, which is necessary

for likelihood maximization.

1.5 'THESIS CONTRIBUTIONS

DPPs can typically be efficiently normalized, marginalized, conditioned, and sam-
pled. Table 2.1 in the next chapter gives the exact time complexities, but roughly
these operations require time cubic in the number of items, N, or features, D, of
these items: O(min(N?, D?)) time. Unfortunately, there are some practical settings
where cubic time is too expensive. For example, recall the document summarization
task from Section 1.1. If the documents we wish to summarize consist of all the New
York Times articles from the past year, then the number of sentences N will be in
the millions. Moreover, if we use the vocabulary of these articles as the feature set,
then the number of features D will be (at least) in the tens of thousands. Exact nor-
malization, marginalization, conditioning, and sampling algorithms cannot handle
data of this size. Thus, in this thesis we explore approximations for the setting where
both NV and D are large.

Besides the quantities that can be computed exactly for moderate N and D, there
are important inference operations for which the expressivity of the DPP causes us
to pay a higher price. We focus on two of these in this thesis. The first, MAP esti-
mation, is known to be NP-hard. Figure 1.3 illustrates for a simple example in two

dimensions how the DPP MAP can significantly differ from a DPP sample. Given

10



that sampling can sometimes be a poor approximation to the MAD, investigating
other approximation methods is vital to making DPPs useful. A second more com-
plex inference task we consider is likelihood maximization, which is conjectured to
be NP-hard. This means that to learn a DPP that puts as much weight as possible
on observed “good” subsets, we must rely on local optimization techniques.

In this thesis, we seek to better address all three of these hard problems: the large-
N, large-D setting, MAP estimation, and likelihood maximization. It might seem
easier to skirt these issues by switching to a simpler model than the DPP—clearly,
given all of the references in Section 1.1, there are many non-DPP-based subset
selection methods to choose from. However, experimental results, such as those in
Sections 4.4.4, 5.6, and 6.7, suggest that sticking with the DPP paradigm is often the

better choice. The primary contributions of this document are summarized below.

* Chapter 2: We review the basic properties and representations of DPPs. For

the core inference tasks, we survey algorithms and hardness results.

* Chapter 3: We discuss several useful DPP variants: k-DPPs, structured DPPs,
Markov DPPs, and continuous DPPs. Several of these variants are relevant to

the results in later chapters.

 Chapter 4: We analyze the impact of randomly projecting features down to a
lower-dimensional space and establish a bound on the difference between the
resulting DPP and the original. We illustrate the practicality of the projected
DPP by applying it to select sets of document threads in large news and research

collections.

e Chapter 5: We build on submodular maximization techniques to develop
an algorithm for finding the DPP MAP problem with a multiplicative ;-
approximation guarantee. We validate the proposed algorithm on a political

candidate comparison task.

* Chapter 6: We derive an expectation-maximization (EM) algorithm for learn-
ing the DPP kernel, motivated by the generative process that gives rise to DPP
sampling algorithms. We show its superiority relative to projected gradient

ascent on a product recommendation task.

11



* Chapter 7: We recap the innovations from the preceding chapters, summariz-
ing the thesis contributions. Lastly, we discuss avenues for future work in the

domain of approximate inference for DPPs.

12



DPP Basics

This chapter discusses the basic properties, algorithms, identities, and hardness re-
sults associated with DPPs. For additional background, references to mathemat-
ical surveys, the use of DPPs as models in physics (e.g. for fermions), theoretical
point processes that are determinantal (e.g. edges in random spanning trees, non-
intersecting random walks), proofs of many of the theorems stated in this section,

and a list of related point processes (e.g. Poisson, hyperdeterminantal), see Kulesza
(2012).

2.1 GEOMETRIC INTERPRETATION

Section 1.2 described the connection between determinants and volumes of par-
allelotopes. To sharpen those intuitions, in this section we provide proofs for the
associated theorems. First, for the case of the 2 x 2 determinant, then for the more

general N x N case.

Proof. (Of Theorem 1.1.) This is a straightforward application of the “base x height”

13



formula for the area of a parallelogram. Let B; serve as the base. Then:

area = || B,|2 x || proj, , (B2 . 2.1)

where proj  , (-) projects to the subspace perpendicular to B;. Using the Pythagorean

theorem to re-write this projection:

| proj, s, (By)IE + Il proj, 5, (B))I3 = 1313 (2.2)
| proj, s, (Bi)llz = \/IIBylI3 — Il proj 5, (B))II3. (2.3)

Now, consider the basis formed by the vectors constituting the columns of a matrix
A. According to Meyer (2000, Equation 5.13.3), the matrix Py = A(ATA)*AT
projects to the vector space spanned by those columns. Applying this with B; as A:

: Try\-1pT BB
ProJHBi(Bj) = Bi(B; B;)” B, B; = A Tmbi- (2.4)
2

Combining Equations (2.3) and (2.4), and squaring the area:

BB |
area? = 1513 15513 - | £ 5, 25)
51571,
BB - 1Bl g g 2 2.6
= BB - 157 26)
~ IBIBIBIE - | BRI B, 27)
~ IBI3IB,IE - (BT B). 29

where Equations (2.6) and (2.7) follow from the fact that norms are homogeneous
functions, which means that scalars such as || B/ B;||> and B; B; inside a norm are

equivalent to powers of these scalars outside the norm. ]

We now show the derivation of the more general determinant-volume relation-

ship for N dimensions.

Proof. (Of Theorem 1.2.) We proceed by induction on N. For N = 1, volume
is length. The length ||Bi]]; is trivially the square root of the 1 x 1 determinant
det(B] B;) = B{ B;. Now, assuming the theorem is true for N — 1, we will show
that it holds for N.

14



Write By = Bl + Bf:, where Bl is in the span of {By,..., By_,} and B is
orthogonal to this subspace. Such a decomposition can be found by running the
Gram-Schmidt process on the B;. Let w be weights such that: B]”V =w B +...+
wy—1Bn_1. Then define the corresponding elementary row-addition transformation
matrices, identity matrices with w; added to entry (i, N): T, n(w;) = I + Lyw;1y,
where 1; indicates an N x 1 vector with zeros in all entries except for a one in the ith.
Let B be identical to B, but with By replaced by Byx. We can relate B to B via the
elementary transformation matrices: B = BT} y(w;) ... Tn_1n(wy_1). Taking the
determinant of B' B, these transformations disappear; the determinant of a product
decomposes into individual determinants, and the determinant of an elementary
transformation matrix is 1. Thus, det(B'B) = det(B"B). Writing out the new
product BT B:

BB = < BlT:Nngl:N—l BINFIBJJ\_/ > . (2-9)
B]J\} Bin-a B]J\‘, B ]J\‘,

. . . T
The orthogonality of By means that B] y_; By is all zeros, as is By Bi.y—1. Thus

the determinant is:
det(BTB) = det(By_,Bi.n_1) B Bs:. (2.10)

By the inductive hypothesis, the first term here is the squared volume of the

(N — 1)-parallelotope defined by By.x_;. Letting By.y_; serve as the base of the

N-parallelotope defined by B, the height component of the “base x height” vol-

ume formula is ||By||2. This is exactly the square root of the second term above,
LT pL

B B, ]

2.2 INFERENCE

This section provides background on various common DPP inference tasks. The

complexity of these tasks is summarized in Table 2.1.

2.2.1 NORMALIZING

The definition of a DPP given in Equation (1.3) omits the proportionality constant

necessary to compute the exact value of P, (V). Naively, this constant seems hard to

15



Task Runtime

Normalizing O(min{N*, D“})
Marginalizing O(min{N*, D* + D*k})
Conditioning For exclusion: O(N¥);

For inclusion: O(min{N%“, D¥ + D?k? + k*})
Given L’s eigendecomposition: O(Nk?); else:

Sampling O(min{N*“ + Nk?, D* + NDk? + D2k, ND?k})
Finding the mode NP-hard, no PTAS
Maximizing likelihood Conjectured to be NP-hard

Table 2.1: Complexity of basic inference tasks. The size of the DPP’s ground set is IV,
and w denotes the exponent of matrix multiplication. If each item in the ground set
is associated with a feature vector (such as the B; of Section 1.2), then D denotes the
vector’s length. We assume D < N. For marginalizing, conditioning, and sampling,
k is the size of the set marginalized, conditioned on, or sampled, respectively.

compute, as it is the sum over an exponential number of subsets: 3.,/ det(Ly).
Fortunately though, due to the multilinearity of the determinant, this sum is in fact
equivalent to a single determinant: det(L + I). This is a special case of Theorem 2.1
for A = (.

Theorem 2.1. Forany A C Y:

Y det(Ly) =det(L + I), (2.11)
Y:ACYCY
where 15 is the diagonal matrix with ones in the diagonal positions corresponding to

elements of A = Y \ A, and zeros everywhere else.
Proof. See Kulesza (2012, Theorem 2.1). ]

Typically, a single N x N determinant for a PSD matrix is computed by tak-
ing the matrix’s Cholesky decomposition. This decomposition re-expresses a PSD
matrix, such as L or L + I, as the product of a triangular matrix and its transpose:
L+ 1 =TT". The determinant can then be computed as the square of the product
of T’s diagonal elements: S_~  T2. Naive algorithms can compute the Cholesky de-
composition in £ N? operations (multiplications). More nuanced algorithms exhibit

improved performance for large N. For example, Bunch and Hopcroft (1974) show

16



that the complexity of triangular factorization is identical to that of matrix mul-
tiplication. Building on the Strassen matrix multiplication algorithm, they obtain
Cholesky decompositions in time < 2.45N87 ~ 2.45 N>897 (Bunch and Hopcroft,
1974, Final sentence of Section 4). This makes their algorithm more efhicient than
the naive approach for N ~ 31,000 and above. While there are matrix multiplica-
tion algorithms that are asymptotically faster than Strassen’s, these are not used in
practice. For instance, the Coopersmith-Winograd algorithm has a complexity of
O(N?375), but the big-O notation hides much too large of a constant coefhcient for
this algorithm to be practical. In analyzing the complexity of algorithms presented
in this thesis, we will use w to denote the exponent of whatever matrix multiplication

algorithm is used. For practical purposes though, think of w as roughly 3.

2.2.2 MARGINALIZING

Just as the probability of a particular set, P,(Y = Y), is proportional to a sub-
determinant of a kernel L, the probability of the inclusion of a set, P(Y C Y),

depends on the sub-determinant of a kernel closely related to L.

Theorem 2.2. For a DPP with kernel L, the matrix K defined by:

K=LL+D) ' t'=I1—-(L+1)"! (2.12)

has minors satisfying:
PY CY) = det(Ky) . (2.13)
Proof. See Kulesza (2012, Theorem 2.2). ]

We can also invert Equation (2.12) to express L in terms of K:
L=K(I-K)'=(I-K)'-1. (2.14)

We will refer to the matrix K as the marginal kernel. From Equation (2.13), two
properties of K are immediately obvious: first, since marginal probabilities must be
non-negative, K must be PSD; second, since marginal probabilities must be < 1,
I — K must be PSD. An equivalent way of stating this second condition is to say

that K’s eigenvalues must be < 1. Examining the eigendecomposition of K and L

17



further clarifies their relationship. They share the same eigenvectors, and K squashes

L’s eigenvalues down to the [0, 1] range:

N N
L=VAV' = Z \ivv, K = Z : ii)\ v, | (2.15)
i=1 i=1 :

where v; is the ith column of the eigenvector matrix V.

Since K and L each contain all of the information needed to identify a DPP, we
can use either one as the representation of a DPP. In fact, given K it is actually not
even necessary to convert to L to obtain the probability of a particular subset. As

shown by Kulesza (2012, Section 3.5), we can write:
PuY = V) = | det(K — I)]. (2.16)

The redundancy of K and L comes with one caveat though: L does not exist if any of
K’s eigenvalues are exactly 1. This is clear from Equation (2.14), where the inverse is
incomputable for K with an eigenvalue of 1; an eigenvalue of 1 for K would imply
an eigenvalue of co for L. As will be made clear by the sampling algorithms though,
as long as some non-zero probability is assigned to the empty set, K’s eigenvalues
will be < 1.

In terms of the complexity of converting between L and K, if this is done using
Equations (2.12) and (2.14) then the dominating operation is the inversion. The
naive algorithm for matrix inversion runs in time 2N?. Strassen’s matrix multiplica-
tion algorithm runs in time < 4.7N log, 7 (Bunch and Hopcroft, 1974, Paragraph 2 of
the introduction) and can be used to compute a matrix inverse in time < 6.84N'°87
(Bunch and Hopcroft, 1974, Final sentence of Section 4). This approach is more effi-
cient than the naive one for N &~ 600 and above. If instead we convert from L to K by
computing an eigendecomposition, this tends to be slightly more expensive. While
asymptotically (as N — o) it has the same complexity as matrix multiplication, the
algorithms that achieve this complexity are not practical unless IV is extremely large.
In practice, we instead rely on algorithms such as Lanczos to convert L or K to a
similar tridiagonal matrix, then apply divide-and-conquer algorithms such as those
described in Gu and Eisenstat (1995) to compute the eigendecomposition of this
matrix. (For real, symmetric matrices this is faster than relying on QR decomposi-
tion algorithms.) The overall complexity for computing the eigendecomposition of
L or K is then ~ 4N?.

18



2.2.3 CONDITIONING

Conditioning on the inclusion or exclusion of a subset is also an easy task for DPPs.
In fact, the class of DPPs is closed under these conditioning operations, which means
that it is possible to write the resulting set probabilities as a DPP with some modified
kernel L such that P (Y =Y) = det(L})/ det(L' +I). Formulas for these modified
kernels are given in Table 2.2. We use L* to denote the kernel conditioned on the
inclusion of the set A and L™ to denote the kernel conditioned on the exclusion
of A. The (N — |A]) x (N — |A|) matrix Lz is the restriction of L to the rows and
columns indexed by elements in Y \ A. The matrix I is the diagonal matrix with
ones in the diagonal entries indexed by elements of Y\ A and zeros everywhere else.
The (N — |A|) x |A| matrix L 4 consists of the [A] rows and the A columns of L.

For |A| = k, the complexity of computing these conditional kernels is:

» L4 K“: Equation (2.18) requires an N x N matrix inverse, which is an O(N*)
operation. Equation (2.20) is dominated by its three-matrix product, an

O(N?k) operation. Formulas for K have the same complexity as the L* ones.
» L™4: Equation (2.19) simply requires copying (N — k)?* elements of L.

* K4: Equation (2.22) requires an (N — k) x (N — k) matrix inverse, which is
an O((N — k)“) operation.

The formulas in Table 2.2 can also be combined to produce kernels conditioned
on both inclusion and exclusion. For instance, including the set A™ and excluding

A°Ut the corresponding conditional kernel is:
LAinﬁAout _ ({Lw_i_[ﬁ]@)—l —T. (217)

Equations (2.18) and (2.21) are derived in Kulesza (2012, Equation 2.42,
2.45). Equation (2.19) follows immediately from the definition of a DPP, and
Equation (2.22) from the application of the L-to-K conversion formula of Equa-
tion (2.12). We derive Equations (2.20) and (2.23) in Lemmas (2.4) and (2.5).
These derivations rely upon the following identity.

Definition 2.3. Schur determinant identity: For a (p + q) X (p + q) matrix M

19



Inclusion: ACY Exclusion: ANY =0

A L
Prob. e
((L+1x)7x) -1 (218) L (2.19)
Lzy—Lzaly'Lyz  (2:20)
K4 K™
Marginal Prob. | ; _ (L+ 1) "4 (2.21)

I—(Ly+ D" (2.22)

Ki— KgaK;'Kyz  (2.23)

Table 2.2: Formulas for computing DPP kernels conditioned on the inclusion or
exclusion of the set A C Y.

decomposed into blocks A, B,C, D that are respectively p x p, p X q, ¢ X p, and q X q:

_| 4B (2.24)
cC D
the determinant of M can be written in terms of the blocks:
det(M) = det(D)det(A — BD'C). (2.25)

Given this identity, we can now derive Equations (2.20) and (2.23).
Lemma 2.4. For a DPP with kernel L, the conditional kernel L* with minors satisfying:

A
P(Y:YUA|AQY):% (2.26)

onY C Y\ A, can be computed from L by the rank-|A| update:
LA =Lz—Lz,Li'L,z, (2.27)
assuming that the inverse L} exists.

Proof. Conditioning on A means normalizing only by sets Y’ that contain A:

det(LyUA)
Z dCt(Ly/) ’

Y"ACY'CY

PLY =YUA|ACY) = (2.28)

20



Suppose, without loss of generality, that the items we are conditioning on are the
last ones: A ={N — |A|+1,...,N}. Then L decomposes into blocks:

p=| *a laa (2.29)
Lyz La
and by Schur’s identity we have that:
dCt(L) = dCt(LA) det (Lg — LAALzlLA,g) . (230)

Let L' denote the matrix Ly — Lz 4,L,'L, 5. Then applying Schur’s identity to the

matrix Lp, where B is any set such that AN B = (), we have:
det(Lpua) = det(La)det (Lp — LpaLy'Lag) = det(La)det (L) . (2.31)
This allows us to simplify Equation (2.28). The numerator can be written:
det(Lyya) = det(L4) det(LY). (2.32)

The normalizing term can similarly be simplified:

> det(Ly) = ) det(La)det(Lin ) (2.33)
YACY'CY Y ACY'CY
=det(Ly) > det(Lin,) (2.34)
YACY'CY
=det(La) > det(L) (2.35)
Y Y'CY\A
= det(L,) det(L' + 1), (2.36)

where the final equality follows from Theorem 2.1. Plugging this back into Equa-
tion (2.28):
det(L,) det(L},) det(LY)

Puly =YUAlACY) = det(La)det(/ + 1) det(L' +1) (2.37)

]

Lemma 2.5. For a DPP with marginal kernel K, the conditional marginal kernel K*

with minors satisfying:
PYCY |ACY)=det(K{}) (2.38)

21



onY C Y\ A, can be computed from K by the rank-|A| update:
K*=Ky— Kz, K{'K, x, (2.39)
assuming that the inverse K| exists.

Proof. By the definition of conditional probability:

PYCY,ACY) det(Kyua)

PYCY|ACY)= PACY)  det(Ky)

(2.40)

Just as in Lemma 2.4, for any set B such that AN B = 0, application of Schur’s

identity yields an expression for the determinant of Kp4:
det(Kpua) = det(K 1) det(Kp), (2.41)

where K" = Kz — K3 4K 'K, 7. This means that Equation (2.40) simplifies to:

det(K4) det(K3)

PYCY|ACY)= det(K )

— det(K2). (2.42)

[]

2.2.4 SAMPLING

Sampling algorithms to draw Y ~ P;, rely on the eigendecomposition of L (or K).
They are based on the fact that any DPP can be written as a mixture of elementary

DPPs, where the mixture weights are products of L’s eigenvalues.
Definition 2.6. A DPP is elementary if its marginal kernel’s eigenvalues are all € {0, 1}.

An elementary DPP is simpler than a general DPP in that it only places proba-

bility mass on sets of a fixed size.

Lemma 2.7. Under an elementary DPP with k non-zero eigenvalues, the probability
of Y =Y is zero for all Y where |Y| # k.

Proof. See Kulesza (2012, Lemma 2.3). ]

22



Let V be a set of orthonormal vectors. Let V7 indicate selection of the columns
. . . . . J
of V that correspond to the indices in a set J. We will write V" to denote an

elementary DPP with marginal kernel KV”:

= v =V/(V)T, PV (Y CY) =det(KY). (2.43)

jged

Given this notation, we can now express Py, as a mixture of elementary DPPs.

Lemma 2.8. A DPP with kernel L that eigendecomposes as 3~ | \ivv]

7 2

is equal to

the following mixture of elementary DPPs:

s
PLY =Y) = Z PVJ( Yy (1 1 +J/\A) : (2.44)
J:JC{1,...,.N} Jijed T jiggd J

Proof. See Kulesza (2012, Lemma 2.2) for a proof that:

1 ;
P(Y=Y)=— PV(Y =Y i 2.45
Y =Y)= iz D {Z} v=nlls- e

Rewriting det(L + I) = [T, (A + 1) and pushing this into the . summation:

J p 1
PLY =Y) = Z PY (Y:Y)H 1+j)\, H 14N\ (2.46)
J:JC{1,...,N} jijed T jiied J
Since 1 — 1—)0:>\ = A , the result is obtained. ]

This mixture decomposition suggests a two-step sampling algorithm for DPPs.
First sample a subset of the eigenvectors, V" by including vector j with probability

- +/\ Algorithm 1, due to Hough,
Krishnapur, Peres, and Virdg (2006), fleshes out this two-step procedure. Assuming
that the eigendecomposition of L is given as input, then the most expensive part of
the algorithm is in the second step, where we modify V' such that it is orthogonal
to the indicator vector e,,. 'This requires running the Gram-Schmidt process, an
O(Nk?) operation. Overall, that makes Algorithm 1’s runtime O(NE?).

It is possible to improve this runtime by avoiding the V' updating. More con-

cretely, on each iteration we can lazily apply a simple conditioning formula to the

23



Algorithm 1: O(Nk?) DPP Sampling

Algorithm 2: O(Nk?*) DPP Sampling

1: Input: eigendecomp. VAV of L 1: Input: eigendecomp. VAV of L
2: J 0 2: J<« 10

3: forj=1,...,N do 3: forj=1,...,Ndo

4 J <+ JU{j} with prob. 4 4 J 4+ JU{j} with prob. 2%
50 V<V, 50 V=V,

6: Y <+ () 6: fori=1,... N do

7: while |Y| < |J| do 70 2 Y pey V(1)?

8: fori=1,...,N do 8 Y « 0

9: Zi e Y pey V(1) 9: while |Y| < |J| do
10:  Select y; with Pr(y;) = ‘J‘Z_ylm 10:  Select y; with Pr(y;) = ‘J‘Z;”le
11: Y« YU{y} 11: Y« YU{y}
12:  j ¢ argmax, V,, 122 1y < VV,]
132 w<V,; 13 forj=1,...,]Y|—1do
14: V + V{T} 14: Tly| < Ty| — :j((z;; f
15: V«V-— vj(lyi)wvyi,: 15: Z 4z — Z—;T‘Qy‘
16:  Gram-Schmidt(V) 16: Output: Y '

17: Output: Y

Figure 2.1: Two DPP sampling algorithms, both based on the elementary DPP
decomposition of L. The slower algorithm computes an orthonormal basis for the
subspace V' orthogonal to e, for each point selected. The faster algorithm relies on
lazy updates of the marginals based on a K'-conditioning formula.

24



diagonal of the elementary DPP’s marginal kernel. Algorithm 2 outlines this ap-
proach. The first step, the selection of J, is the same as in Algorithm 1. The second
step only requires O(Nk?) time though. To prove the correctness of Algorithm 2,

we rely on the following corollary and lemma.

Corollary 2.9. Given a marginal kernel K, the conditional marginal kernel K1, with
minors satisfying P(Y C Y |i € Y) = det(K{™), can be computed from K by the rank-

I update:

. 1
O S N
K= kg = g Rl

assuming K;; # 0. The notation Key, indicates the vector composed of the ith column of

(2.47)

K, without its ith element.
Proof. 'This follows directly from Lemma 2.5 with A = {i}. ]

Lemma 2.10. Let V. € RN** be the eigenvectors of an elementary DPPs marginal
kernel: K = VV'T. LetY C Y be size-k and arbitrarily order its elements [y, . . ., yx).
Use Y, to denote the subset {y,, ..., yi}, withYy = 0. Then we can express the (s,t) entry

of the conditional marginal kernel as follows:

|Yf‘ KYJ'—IKYJ'—l
Y, syj By,
Ky = Kga— Z KT”] ) (2.48)
=1 viyi
where K¥* is the marginal kernel conditioned on the inclusion of Y;.

Proof. We will proceed by induction on ¢. For ¢ = 0 the statement of the lemma
reduces to K%, = K. This is trivially true, as the original marginal kernel is already
conditioned on the inclusion of the empty set. For the inductive step, we assume
the lemma holds for ¢ — 1 and show that this implies it is also true for ¢. From

Corollary 2.9 we have the following expression for K:

Yoo1 7-Ye1
Ky, K,

K = Ky — = (2.49)
Kypy,
Moving the K}/ term to the lefthand side yields:
KZZAKYZA
K;;Z _ K;;vffl — _ Ye wijé ) (2‘50)
Kyzyz

The righthand side here is exactly the same as the difference between the ¢ and ¢ —1

cases in the statement of the lemma. ]

25



We can now prove the correctness of Algorithm 2.
N T

Theorem 2.11. Given the eigendecomposition of a PSD matrix L = Y, hvv,/,
Algorithm 2 samples Y ~ Py.

Proof. Lemma 2.8 establishes that the mixture weight for elementary DPP PV is:

1 ; AJA' 11 (1_ 1?&_) | 2.51)

jiied T e

The first loop of Algorithm 2 selects V7 with exactly this probability. Thus, the
first loop of Algorithm 2 selects elementary DPP PV with probability equal to its
mixture component. Line 5 sets V = V7, and all that remains to show is that the
rest of the algorithm samples Y ~ PV. In what follows, we will use K to refer to the
marginal kernel of the selected elementary DPP.

Asin Lemma 2.10, let Y; be the set {y;, ..., y,}. Thatis, the items selected during
the first ¢ iterations of Line 9’s while-loop. First, by induction on |Y|, we show that at
Line 15 the variable 7y is equal to K. };'/Ty'l‘l In other words, we show that ry| is the
yjv|th column of the marginal kernel conditioned on inclusion of {yi,...,yy|-1}
For the base case, [Y'| = 1, the result is immediate; Line 12 sets r; to K. ,,, and the
for-loop at Lines 13 and 14 does not change it. For the inductive case, |Y| = ¢, we
assume 7; = K.;; ' forall j < ¢— 1. Line 12 sets r, = K.,, and Line 13’ for-loop
updates r, exactly according to Equation (2.49) from Lemma 2.10. Thus, at Line 15
we have: r, = K}Z;l, as desired.

Given this invariant on 7|y|, we now show that at Line 10 the variable z; is always
equal to the marginal probability of selecting item i, conditioned on the current
selection Y. That is, it is always the diagonal entry of the conditional marginal
kernel: z; = K. We again proceed by induction on |Y|. For the base case, Y = 0,
the marginal probability of an item i is K;. Since Line 7 initializes z; = V;:Vg = K,
the base case is trivially true. For the inductive case, [Y'| = ¢, the inductive hypothesis
says that z; = K" at Line 10 during the (th execution of the while-loop. Then it is
clear that Line 15 updates z; by applying Equation (2.49) for s = t. Thus, we have
2z = K, at Line 10 during the next iteration of the while-loop, as desired.

Given this invariant on z;, all that remains to show is that the probability of

selecting element 7 to be the ¢th item in Y is z;/(k — ¢+ 1), as in Line 10. According

26



to Lemma 2.7, Y must have |Y'| = |J] at the end of the algorithm. Thus, when ¢ —1
items have been selected, there are still £ — ¢+ 1 ways in which item i could be added
to the final selection: it could be added as element ¢, or ¢ + 1, etc. Thus, Line 10

correctly normalizes z; to account for all of these possibilities. ]

2.2.5 MAP ESTIMATION

Up to this point each of the inference tasks described—normalizing, marginalizing,
conditioning, and sampling—can be performed in roughly O(N?) time. The task of
finding the MAP (or mode) of a DPP is more difficult. In fact, it is known to be
NP-hard. This was shown by Ko, Lee, and Queyranne (1995), whose work focuses
on the equivalent problem of selecting a subset of Gaussian random variables such
that the entropy of the selected set is as large as possible. They start by assuming that
the covariance matrix ¥ of the variables is known. Based on ¥, the entropy of any

subset Y of the variables can be computed according to:
H(Y) = %m (27e)" ! det(Sy)) - (2.52)

For a fixed set size, [Y| = Fk, this is proportional to logdet(Zy). Ko et al. (1995)
reduce the NP-complete “stable set” problem to the problem of maximizing
logdet(Xy) subject to the cardinality constraint |Y| = k. Specifically, the stable
set problem asks: given an N-vertex graph G and an integer £ < N, decide whether
G contains a stable set with k vertices. A stable set is defined as a subset S of G’s
nodes such that there are no edges between any of the nodes in S. The transforma-
tion of this graph problem into a determinant problem is accomplished by defining

a PSD matrix based on the graph’s edges:

3N ifi—j,
Yy =141 if(i,j) isan edgein G, (2.53)
0 otherwise .

Ko et al. (1995) show that finding a size-k minor of value greater than (1 —
(3N)~2)(3N)* corresponds to finding a stable set of size k. Thus, the problem
of finding the largest size-k determinant of a PSD matrix is NP-hard, even if the
matrix only has entries with values in {3N, 1,0}. Ko etal. (1995) extend this reason-

ing to also show NP-hardness in the unconstrained setting, which is equivalent to

27



the problem of finding the mode of a DPP with kernel . They also experiment with
a branch-and-bound search algorithm for finding the best subset. It relies primarily

on the eigenvalue interlacing property to define an upper bound.

Definition 2.12. Eigenvalue interlacing property: Let M be an N x N symmetric
matrix. Denote the r X r leading principal submatrix of M as M|[r] and its eigenvalues as
M(Mr]) < Xa(M[r]) < ... < A\(M[r]). Then for any two matrices M|r] and M|r + 1],
and any index i € {1,2,...,r}, the following inequality holds:

Ni(Mr+1]) < N(Mr]) < \ipa(Mr+1]). (2.54)

In experiments, the branch-and-bound method is shown to be capable of finding
optimal subsets for problems of size up to N = 75, but takes a relatively long time to
do so. The authors state: “In all of our experiments, the time spent by the heuristic
is negligible [compared to the total runtime of the algorithm].” The methods we
consider in Chapter 5 run in time comparable to Ko et al. (1995)’s “negligible”
heuristics though.

The more recent work of Civril and Magdon-Ismail (2009) strengthens the hard-
ness results developed by Ko et al. (1995). In particular, they show that no PTAS
exists for the problem of finding a maximum volume submatrix. That is, their proof
precludes the existence of an algorithm that, given any error tolerance ¢, produces a
solution within a factor 1 — € of optimal. Kulesza (2012) adapts this proof to show
that an approximation ratio of § 4-¢ is NP-hard for the problem of finding the mode
of a DPP.

Theorem 2.13. Let DPP-MODE be the optimization problem of finding, for an N x N
PSD matrix L indexed by elements of Y, the maximum value of det(Ly ) over allY C Y.
It is NP-hard to approximate DPP-MODE to a factor of 5 + e.

Proof. See Kulesza (2012, Theorem 2.4). ]

For the cardinality-constrained variant of the problem where |Y| = £, Civril
and Magdon-Ismail (2009) propose an approximation algorithm guaranteed to find
a solution within a factor O () of optimal. This algorithm is exactly the greedy
algorithm of Nemhauser, Wolsey, and Fisher (1978), for the function logdet. In
Chapter 5 we discuss this algorithm in more detail and compare it empirically with

our own MAP estimation algorithms.

28



2.2.6 LIKELIHOOD MAXIMIZATION

Consider the problem of fitting a DPP to data. For probabilistic models, one stan-
dard way to find model parameters is to maximize the log-likelihood of the data. In
the most unrestricted setting, the model parameters for a DPP are the entries of L
or K. Given data consisting of n example subsets, {Y1,...,Y,}, where ¥; C Y for all

i, the log-likelihood maximization problem is:
mLaXZ[logdet(Lyi) —logdet(L +1I)] s.t. L= 0. (2.55)
=1

Unfortunately, this objective is not concave. The function f(M) = logdet(M) is
concave for PSD M, implying that the log-likelihood is a difference of two concave
functions, but this does not make log-likelihood overall concave. Applying Equa-
tion (2.16) gives a form of the log-likelihood objective in terms of K

mKaX;log(!dedK —Iy)) st K=0,[—K=0. (2.56)

This looks simpler, but it is not concave either. The matrix K" — I3, can be non-
PSD, and logdet is only concave when restricted to the PSD cone. No algorithm is
currently known for efliciently finding a global optimum of DPP log-likelihood. In
Chapter 6 though, we derive an expectation-maximization algorithm to find a local
optimum.

More restricted likelihood maximization settings are also of interest. For instance,
instead of allowing the entries of L or K to take on arbitrary values, suppose we
have a fixed set of kernels 51, ..., S, and require that L be a weighted sum of these.

Maximizing likelihood under this constraint is conjectured to be NP-hard.

Conjecture 2.14. Given a sequence of N x N PSD kernels S, ..., S,, indexed by the
elements of Y, and a sequence of subsets Y1,...,Y, of Y, finding @ € R", 6 > 0 to
maximize:

n

L(0) = Z[logdet(S(O)yi) —logdet(S(0) + I)] s.t. S(0) = i 0;5;  (2.57)

i=1

is NP-hard.

29



Proof. Kulesza (2012, Conjecture 4.1) provides a partial reduction of the NP-

complete exact 3-cover problem to this likelihood optimization. [

While restricting L to be a weighted sum of fixed kernels does not make likeli-
hood maximization obviously tractable, there are other, tighter restrictions that do.

We discuss these in Chapter 6.

2.2.7 MAXIMIZING ENTROPY

In addition to likelihood maximization, another common way of fitting a proba-
bilistic model to data is to maximize its entropy, subject to certain feature-matching
constraints. In the case of the exponential family of distributions, maximizing like-
lihood is equivalent to maximizing entropy, subject to the constraint that expected
feature values under the model equal their empirical counts. While such a likelihood-
entropy equivalence is not known to hold for DPPs, maximizing entropy is never-
theless a reasonable strategy for estimating DPP parameters, since it can be justified
from the perspective of minimizing the prior knowledge put into the distribution.

In terms of K, the entropy is:

H(K) = Z |det(K — Iy)|log(| det(K — Iy)]). (2.58)
Y:YQy
Lyons (2003) conjectures that H(K) is concave in K, and numerical simulation
supports this. However, no proof is known.

Maximizing entropy to fit a DPP model is in some ways more difficult than
maximizing likelihood. For instance, no efficient way of exactly computing the
exponential-size sum in the entropy expression is known. While Section 2.2.1 ex-
ploits the multilinearity of the determinant to write ), -, det(Ly) as the single
determinant det(L + I), entropy’s multiplication by a log term breaks the linearity.
Thus, in Chapter 6 of this thesis we focus on likelihood maximization and defer

exploration of entropy maximization to future work.

2.2.8 COMPUTING EXPECTATIONS

A more general inference task that also often seems to be difficult for DPPs is com-

puting expected values. Since the distribution defined by a DPP has 2V values,

30



computing expectations naively involves an exponential-size sum. There are a few
interesting quantities for which this sum simplifies though. For instance, the ex-
pected set size can be computed simply by taking the trace of the marginal kernel:
Ey.p, Y]] = tr(K) (Kulesza, 2012, Equation 2.34). But for many other quantities
no exact, efficient way of computing the expectation is known. For instance, the for-
mula for entropy discussed in the previous section is an example of an expectation
that seems difficult to compute. Specifically, it is equivalent to Ey..p, [logPL(Y)].
Likewise, it is not known how to compute the following expectation exactly and

efficiently:
Z dCt Ly . (2 59)

Y:YCY

By, [P(Y)] = det(L + 1)? L )2

Being able to exactly and efficiently compute this quantity would mean we could
normalize a distribution that places probability mass proportional to det(Ly)? on
a set Y. This distribution would be more peaked around high-quality, diverse sets
than the corresponding DPP, which could make it a superior tool for subset selec-
tion. Unfortunately though, even the normalization constant for this distribution
seems difficult to compute exactly. In fact, we can show definitively that one type

of expectation similar to that of Equation (2.59) is #P-hard to compute.
Theorem 2.15. Let L and M be N x N PSD matrices indexed by elements of Y. Then
the expected value:

1
det(L + I')det(M + 1)

EYNPL [PM<Y)] = Z det Ly dCt(My) (260)

Y YCQy

is #P-hard to compute.

Proof. We reduce from the #P-complete problem 1MPERFECT-MATCHINGS (Valiant,
1979, Section 4, Problem 6). The input to this problem is a bipartite graph G =
(U,V, E) with N edges E between the nodes in U and the nodes in V. The output is
the number of matchings of any size.

The reduction is as follows. For the ith edge, let E;; and Ej» denote the nodes
from U and V, respectively. Let the N x N matrix L have entries L;; = 1(E;; = Ej1),
indicating whether edges i and j share the same U-node. Similarly, let Mf;; = 1(E;» =
Ejs), indicating whether edges 7 and j share the same V-node.

31



First, we show that det(Ly) det(My) = 0 whenever Y does not correspond to a
matching. ForanysetY C {1,..., N} withi,j € Y, if E; and E; share an endpoint
then either L.; = L.; or M.; = M. ;. That is, identical endpoints correspond to two
identical columns in L or M. Since the determinant of a matrix whose columns are
linearly dependent is zero, this means that det(Ly) or det(L,y) is zero whenever Y
contains indices of edges with common vertices.

Now we show that det(Ly ) det(My) = 1 whenever Y does correspond to a match-
ing. If the indices in Y correspond to edges that all have distinct U-nodes, then
Ly = 0foralli,j € Y wherei # j. Thus, Ly = I and det(Ly) = 1. The same
argument applies to M for distinct V-nodes.

The expectation from the statement of the theorem corresponds to a sum over
all subsets of edges, and we have shown that each term in the sum contributes 1 for
a matching and 0 for a non-matching. Multiplying the expectation by the inverse
of the normalizing term, det(L + I)det(M + I), yields a count of the number of

matchings of any size. ]

Despite the negative results for exactly computing expectations under DPPs,
there is of course always the option of approximating. Since it is easy to sample
from a DPD, any of these expectations can be approximated by drawing samples

from P;.

2.3 CLOSURE

The class of DPPs is closed under the operations of scaling, restricting, complement-
ing, and conditioning. This means that for each of these operations it is possible to
write the resulting set probabilities as a DPP with some modified kernel L’ such
that P, (Y =Y) = det(L},)/ det(L' + I). For the conditioning operation, the cor-
responding L’ can be found in Table 2.2. For the other operations, the modified
kernels are given below; see Kulesza (2012, Section 2.3) for proofs. In each setting
we assume that there is a variable Y distributed as a DPP with kernel L and marginal
kernel K.

Scaled kernel: Scaling L by any non-negative constant v results in a related PSD
matrix L, which is a valid DPP kernel. Similarly, scaling K by any v € [0, 1] yields

32



a PSD matrix with eigenvalues in [0, 1], and thus another valid DPP kernel. (Note
though that 7L and vK almost always describe different DPPs.)

Restricted kernel: The restricted variable Y N A, for A C Y is distributed as
a DPD, with marginal kernel K4. The corresponding non-marginal kernel can be
found by applying Equation (2.14): K(I — K4)™ .

Complement kernel: The complement variable Y\ Y is distributed as a DPP,
with marginal kernel K = I — K. With this complement identity, we can also
now express the marginal probability of any partial assignment as a product of two

determinants:

PBCY,ANY =0)=PBCY)P(ANY =0 |BCY) (2.61)
= det(Kp)det(I — K%). (2.62)

2.4 DUAL REPRESENTATION

The normalizing, marginalizing, conditioning, and sampling operations discussed in
Section 2.2 all require time polynomial in N. As N grows large, these operations can
become prohibitively expensive. However, in the case where each item i is associated
with a feature vector B; € RP*!, as in Section 1.2, a simple alternative exists for
reducing runtime complexity. More concretely, we can replace N with D. In settings
where D < N, this results in substantial savings. (In Chapter 4, we discuss the
setting where both N and D are large.)

Let L = B'" B and consider the D x D matrix C = BB, which is also PSD.
We will refer to this matrix as the dual kernel. The eigendecompositions of L and C'
are closely related: their non-zero eigenvalues are identical and the eigenvectors of L

convert to those of C' via the linear map B'.

Proposition 2.16. 7he eigendecomposition of C' is:
o D
C=VAVT =) \oid/] (2.63)
=1
if and only if the eigendecomposition of L is:

L= ED;)\ (%BT@-) (\/%BT@i) ' . (2.64)

33




Proof. See Kulesza (2012, Proposition 3.1). ]

By exploiting this eigendecomposition relationship, we can rewrite many DPP
inference operations in terms of C, replacing their N dependence with a D depen-
dence. 'The following subsections give an overview of these reductions. Those that

are not explained in detail here can be found in Kulesza (2012, Section 3.3).

2.4.1 INORMALIZING

DPP normalization can be transformed from an O(N%) operation to an O(D*) op-

eration by applying the identity det(L + I) = det(C + I).

2.4.2 MARGINALIZING

The eigendecomposition of C' takes time O(D¥) to compute. Exploiting Equa-
tion (2.15), which establishes that the eigendecompositions of L and the marginal
kernel K are nearly identical, we can compute any single entry K;; in O(D?) time,
assuming the eigendecomposition of C' is known. Extending this, for a set Y of size
k, the ®&H) entries needed for the submatrix Ky can be computed in O(D?k?) time.
This makes the operation of computing a size-k marginal O(D?k? + k¥).

2.4.3 CONDITIONING

Recall the conditioning equations from Table 2.2. Expressions such as the one for
marginal exclusion, Equation (2.22), K™ = I — (Lz + I)™!, are not particularly
conducive to replacement of L by the dual kernel C. If Ly is full-rank, then |4] is
< D and there would be no savings from using C' in place of L. If on the other hand
L3 is not full-rank, then the addition of the identity matrix in this formula changes
the eigendecomposition of L significantly in ways that cannot be easily translated to
C; the transformation of the eigenvalues is trivial (the identity adds 1 to each), but
the change in the eigenvectors formerly associated with zero eigenvalues is not easy
to characterize.

For other conditioning formulas, such as the one for inclusion of a set A, Equa-

tion (2.20), L* = Ly — Ly 4L,'L , 3, it is more clear how to leverage the dual kernel

34



to improve computational complexity. In this case, the translation from L to L#
can be written as a linear map from B to a new matrix B*. Lemma 2.17 gives the
details. Given B4, the conditional dual kernel C4 is simply B4(B4)T.

Lemma 2.17. If L = B' B, then we can write the kernel conditioned on the inclusion
of the set A as L* = (B*)" B4, where:

Z4 =1 — B4(B)BA)"'B} (2.65)
B* = 7B;. (2.66)

Proof. Substituting B into the formula developed in Lemma 2.4:

LA =Lz— LE,ALZlLA,Z (2.67)
= BIBx— B}Ba(BiBa)  BiBz (2.68)
= B (I — Ba(B)Ba)"'Bj) Bx (2.69)
= B;Z"B;. (2.70)

The matrix Z4 is a projection matrix, which implies that it is idempotent: (Z4)? =
zA. Thus, L* = BL(Z*)*B;. Since the Z* matrix is also clearly symmetric, we have
the desired result: L4 = (B4)T B4, ]

We could compute B4 and use it to get C* via the product B4(B#)". For small
k and large N though, it is more efficient to compute C* based on the fact that
BABYT = ZACZA. We still have to compute Z4, which takes O(D?k? + k) time.
But then, instead of an O(D?*(N — k)) matrix multiplication, only an O(D*) one is
required. Overall, this means that C* can be obtained in O(D* + D?k* + k) time.

2.4.4 SAMPLING

Recall the two algorithms from Section 2.2.4. The slower one, Algorithm 1, has a
complexity of O(Nk?), where k is the size of the sampled set. Kulesza (2012, Section
3.3.3) shows how to adapt this algorithm to use the dual kernel C'in place of L, with a
resulting complexity of O(N Dk*+ D?k?). To better compare these two complexities,
note that a sample from a DPP will not be larger than the rank of the DPP’s kernel,

35



implying k£ < D. This makes the O(Nk?) of the original algorithm better than the
complexity of the dual algorithm. Still, the dual algorithm might be a better choice
if one does not have the eigendecomposition of L pre-computed. Including the cost
of the initial eigendecompositions in the runtime analysis, we have complexities of
O(N¥ + Nk?) for the original algorithm versus O(D* + N Dk? + D?k?) for the dual
version.

For the faster sampling algorithm from Section 2.2.4, Algorithm 2, the complex-
ity without including the eigendecomposition is O(Nk?), but with the eigendecom-
position it is O(N“ + Nk?). To create a dual variant of this algorithm, we can use
many of the same techniques as Kulesza (2012) applies to create a dual for Algo-
rithm 1. We start by assuming that instead of an eigendecomposition of L, we have
an eigendecomposition of C'. The initial step of sampling the set J does not change,
as C'and L have identical non-zero eigenvalues. To compute the initial z;, we borrow
an O(NDk) procedure that Kulesza (2012) uses to compute the same quantity for
the dual version of Algorithm 1. Given these, all that remains to convert is Line 12
of Algorithm 2. This line, 7y + VVyI:, computes K. ,,. From the dual marginaliza-
tion section, Section 2.4.2, we know that it is possible to compute any single entry

of K in O(D?) time, given C’s eigendecomposition. The exact formula for K, is:

K., = i A ( L B%) (LBT@-) (2.71)
Y T i J J : *
j=1 )\j + 1 )‘j Y \/A_J

Applying this, Line 12 can be re-written as an O(N Dk) operation, where the £ factor

is a result of the fact that the algorithm only needs to sum over selected eigenvec-
tors, not all D. The runtime of the resulting algorithm can be further improved by
noting that the final term in the equation does not depend on y;, and so it can be
pre-computed. Algorithm 3 compiles the modifications described in this section to

summarize the full sampling procedure. The overall algorithm runtime complexity
is O(NDE).

36



Algorithm 3: Dual DPP Sampling

Input: B and eigendecomp. VAV of C
J <0
forj=1,....Ddo

J + JU{j} with prob. ﬁr—g]
fori=1,...,Ndo

2
Zi & D ey <ﬁ@JTB’)
for j € Jdo
Bj < BT@]'
Y « 0
while Y| < |J] do
Select y; with Pr(y;) = \J\iylin
Y « Y U {y}
Ty < Zje] ﬁ (BZI/IA]J) Bj
forj=1,...,[Y|-1do

ri(Yi) .,
ri(y;) " J

—_
M 72

—

Tly| < Tly| —

—
a

_ 12
Z 4+ z = T

Output: YV

_.
!

2.5 QUALITY-SIMILARITY DECOMPOSITION

We introduce in this section a small amount of additional notation common to
most practical DPP work. Specifically, it is standard to separate out notions of item
quality and item similarity. Section 1.2 aliased these two by assuming that each item
i is entirely characterized by a feature vector B; € RP*!. We can decompose B; into
two parts though: its magnitude || B;||2, which represents feature quality ¢;, and its
direction ¢; € RP*!||¢;]|2 = 1, which models item similarity. Defining two N x N
matrices to summarize this information, a diagonal quality matrix @) and a similarity

matrix S, we have:

Bi=q¢i, Qu=aq, Si=0¢ 0;, Lij=aqddjq=QiuS;Qj- (2.72)

37



Given this decomposition, L = QSQ, we can re-write DPP probabilities as a product

of a quality term and a diversity term:

Py =Y) =[] ] det(Sy). (2.73)

1:19€Y
For many of the real-world applications we discuss, this decomposition mirrors the
form of the input data. For instance, in the case of image search, the quality of
the ith image may depend on features such as contrast and sharpness that are not
necessarily relevant to judging its similarity to other images. Hence, it is natural to
separate out these quality features to generate a ¢; score, then normalize the other

features to create ¢;.

38



DPP Variants

This chapter discusses recent work that extends the basic DPP model discussed in
Chapter 2 to create new models better suited to various practical settings. We exam-
ine cardinality-constrained and structured variants in detail here, as they will play
a role in later chapters. We also touch on Markov DPPs and continuous DPDs,
though the remainder of the thesis does not contain experimental results related to

those two variants.

3.1 CARDINALITY-CONSTRAINED DPPs

In practice, it is often useful to consider only subsets of a fixed size, &, rather than all
2V subsets of Y. This gives more control over the size of sets produced by DPP algo-
rithms, which is important for two main reasons. First, for ease of use in applications
where a cardinality constraint is standard. For example, document summarization
systems are often limited to producing k-sentence summaries, so that the results are
of a consistent, easily-digestible size. The second main reason that a model restricted
to sets of a fixed size is needed is that it may inherently be a better fit for certain

problems. For example, consider the problem of modeling the locations of spruce

39



trees on a particular plot of land. The resources of the land will most likely dictate
that it can comfortably support approximately some fixed number of trees. Hence,
a model that places substantial probability mass on much larger or much smaller
numbers of trees will be a poor fit.

To address the need for models placing probability mass only on k-sets, Kulesza
and Taskar (2011a) introduced k-DPPs. More concretely, a k-DPP with kernel L

has probabilities:
det(Ly )

Z dCt(Ly/) ’
Y'Y'CY,
Y=k
for Y C Y where |Y| = k, and P}(Y) = 0 otherwise. As with regular DPPs, many

of the inference operations common to probabilistic models can be performed in

PLY) = (3.1)

polynomial time for k-DPPs. We require one additional definition to describe these

k-based algorithms.

Definition 3.1. 7he kth elementary symmetric polynomial on the values Ay, . .., \y is:

er(Ms o Av) = Y IR (3.2)

J:JC{1,...,N}, jij€J

J|=k
For a matrix L with eigenvalues )\, ..., Ay, we will write e;,(\,..., \n) as ex(M).
Moreover, for the restriction to the first v eigenvalues )1, . .., \,, we will write ej,(M).

When the meaning is clear, we will also use €j, as shorthand for e,(M).

While the explicit formula in Definition 3.1 includes an exponential-size sum-

mation, it is possible to compute it efficiently due to the recurrence relation:
efCV = e,]fvfl + ANeiV:ll ) (3.3)

Baker and Harwell (1996) exploit this relationship to create a summation algo-
rithm that computes e} and all of the lesser polynomials el ..., ef ; in time O(Nk)
(Kulesza, 2012, Algorithm 7). All of the DPP inference methods can be modified
to perform inference for k-DPPs by exploiting these elementary symmetric polyno-

mials.

e Normalizing: The denominator in Equation (3.1) is equivalent to the elemen-

tary symmetric polynomial e, (L) (Kulesza, 2012, Proposition 5.1).

40



* Marginalizing: For regular DPPs, the marginal kernel K can be computed in
O(N¥) from L. Then each subsequent marginal for a set of size k requires just
O(k¥) time. Unfortunately, for k-DPPs no marginal kernel exists. However,
it is still possible to get the marginal probability of a particular subset A as

follows:

PHACY) = %

(Kulesza, 2012, Equation 5.29). Every marginal requires the computation of

det(La) = ei" 14 (LY)PE(A) (3.4)

a unique conditional kernel L# and its eigendecomposition. Thus, the cost of
computing the marginal probability of a size-k set under a k-DPP is O(N?k +
(N — k)¥). 'This can be somewhat improved for small sets by applying an

alternative formula. For example, for singleton sets we have:
P eY) Z)\ ek W (3.5)

where ;7 (L) = e; (M, ..., A\j_1,\j41,- .-, Aw) is the (k — 1)-order elemen-
tary symmetric polynomial for all eigenvalues of L except \; (Kulesza, 2012,
Equation 5.33). 'This formula requires O(N?k) time to compute, given the
eigendecomposition of L. In fact, since the ;7 are the same for all i, we can

compute all singleton marginals in O(N?k) time.

* Conditioning: Applying the same formulas as in the top half of Table 2.2

yields conditional kernels that can serve as k-DPP kernels.

e Sampling: Only the first part of the regular DPP sampling algorithms, the
selection of the elementary DPP, has to change for £-DPPs. More concretely,
instead of selecting from elementary DPPs of all sizes, it must change to select
only from elementary DPPs of size k. The resulting algorithm (Kulesza, 2012,
Algorithm 8) runs in time O(Nk), assuming the eigendecomposition for L is
given as input. This does not alter the overall complexity of the DPP sampling
algorithms from Section 2.2.4, so the complexity of sampling from a k-DPP

is the same as for sampling from a regular DPP.

* Hard inference problems: All of the operations that were shown or conjec-

tured to be NP-hard for regular DPPs are similarly difficult for £-DPPs. (If

41



iraq iraqi killed baghdad arab marines deaths forces
social tax security democrats rove accounts
owen nominees senate democrats judicial filibusters
israel palestinian iraqi israeli gaza abbas baghdad

pope vatican church parkinson

Jan08 Jan28 Feb17 Mar09 Mar29 April8 May08 May28 Junl7

Feb 24: Parkinson’s Disease Increases Risks to Pope

Feb 26: Pope’s Health Raises Questions About His Ability to Lead

Mar 13: Pope Returns Home After 18 Days at Hospital

Apr 01: Pope’s Condition Worsens as World Prepares for End of Papacy
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers

Apr 18: Europeans Fast Falling Away from Church

Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name

Figure 3.1: A set of five news threads. Above, the threads are shown on a timeline
with the most salient words superimposed; below, the dates and headlines from the
lowest thread are listed. The headlines indicate that the articles in this thread con-
stitute a coherent news story.

switching to k-DPPs made any of these problems easy, then we could simply
iterate over k = 1,..., N to solve the problem for regular DPPs.)

3.2 STRUCTURED DPPs

For some of the applications mentioned in the introduction, the number of items
to choose from is exponential. For example, pose tracking, network routing, and
motion summarization fall into this category, as do variants on the document sum-
marization task. More concretely, consider a variant of the document summarization
task that we will refer to as “news threading”: given a collection of news articles from
a certain time period, select k& news “threads” where each thread covers one coherent
news story and consists of R news articles describing the major events of that story.

Figure 3.1 gives an example of this type of thread set.

42



If there are M news articles, then there are O(M*) possible news threads, and
O(M**) possible size-k subsets of threads. The inference tasks for the corresponding
DPP can be prohibitively expensive even for moderate values of M, R, and k. The
problem under consideration has some structure to it though, in that two threads can
share a common sub-thread. To handle such settings, Kulesza and Taskar (2010)
introduced structured DPPs. Essentially, their work shows that if we require that
common components of threads share quality scores and similarity features, then we
can efficiently handle a ground set of exponential size, N = M*~.

More concretely, let Y be the set of all structures and let y € Y denote a single
structure with R parts {yi,...,yr}. For the news threading example, y would be a
single thread, the set of articles covering the major events of one news story, and the
parts would be individual articles. Finally, define a set of factors F', where each factor
« € F represents some small subset of the parts of a structure. For instance, F' could
consist of singleton subsets where each « is an article, or F' could consist of size-2
subsets where each « is a pair of articles. The key assumption we will make is that
the model decomposes over these factors. Specifically, a structure y is characterized

by quality score ¢(y) and similarity features ¢(y) that decompose as follows:

1¥) =[] w(wa), W) =D daly.)- (3.6)

acF acF
These decompositions are very natural for many applications. Again, considering the
news threading application, suppose that each « is a single article. If the similarity
features for a single article ¢, (y,) are word counts, then the features for a thread are
also word counts, since ¢(y) is simply a sum over y’s factors’ features. Thus, ¢(y) in
this setting has a clear interpretation.

The factors F' can be thought of as defining a graph consisting of two types of
nodes, factor nodes and variable nodes, and an edge connecting each variable node
to the factors in which it participates. As is the case for graphical models, structured
DPP inference algorithms are efficient as long as F’s graph has a low treewidth.
That is, applying the junction tree algorithm (Lauritzen and Spiegelhalter, 1988) to
convert it into a tree graph, the degree of the resulting tree factors is bounded by
some small constant c. A small ¢ is often quite sufficient for interesting models: for
all of the experiments in subsequent sections we have ¢ = 2.

Given the factor graph, all of the standard DPP inference methods can be con-

43



verted into structured DPP inference methods by exploiting the dual kernel C' from
Section 2.4 and the second-order message passing algorithm of Li and Eisner (2009).
Second-order message passing allows us to compute C' itself in O(D*M°R) time
(Kulesza, 2012, Section 6.3.1). Assuming C' is given, the complexities of the various

inference tasks are as listed below.

* Normalizing: By applying the det(C' + I') equation from Section 2.4.1, struc-

tured DPPs can be normalized in O(D*) time.

e Marginalizing: By applying the dual kernel marginalization procedure de-
scribed in Section 2.4.2, any size-k marginal of a structured DPP can be com-
puted in O(D?k? + k) time. We can also compute the marginal of a particular
part y, in O(D*M*R) time (Kulesza, 2012, Equation 6.49).

* Conditioning: By applying the dual kernel conditioning formula developed
in Section 2.4.3, a structured DPP can be conditioned on the inclusion of a
size-k set A in O(D* + D?*k? + k“) time.

e Sampling: Assuming the eigendecomposition of C' is known, a set of struc-
tures can be sampled from a structured DPP in O(D?*k* + DM°RE?) time
(Kulesza, 2012, Algorithm 11).

3.3 MARrkov DPPs

The simplest form of the subset selection task asks only for a single subset. Some
applications though are better described as the sequential selection of multiple sub-
sets. For example, consider another variant of the document summarization task:
each day news outlets publish many articles, and from these we wish to select a few
articles for a user to read. Automatically selecting a set of articles that is not only
itself diverse, but that is also diverse compared to previously selected subsets is a task
of practical importance: the additional between-day diversity allows for greater ex-
ploration of the article space. Affandi, Kulesza, and Fox (2012) address this type of
problem by introducing Markov DPPs (M-DPPs).

More concretely, an M-DPP is a first-order, discrete-time, autoregressive point

process that can be characterized by specifying a PSD matrix L, an initial distri-

44



bution, and a Markov transition distribution. For Y, C Y, Affandi et al. (2012,
Equation 13) define these distributions as:

o . dCt(Lyl)
PY=Y)= gt + D G7)

det(M
PY, =Y, |Y, =Y = dei(fM _YHY)> : (3.8)
Yia

where M is the matrix L(I — L)~'. These particular distributions not only imply that
the individual Y, variables are DPP-distributed, but also that the set union variable
Z,=Y,UY, ; is DPP-distributed as well. Specifically, if the individual variables
have kernel L and marginal kernel K, then Z, has kernel 2/ and marginal kernel 2K'.
It is also possible to analogously define an M-k-DPP over sets of size k. The resulting
union variable distribution is a 2k-DPP, but does not yield Y, that are exactly k-
DPPs. Nevertheless, the diversity at the 2k level implies some diversity at the & level.
Affandi et al. (2012) derive exact and efficient sampling procedures for M-DPPs and
M-k-DPPs. These algorithms essentially combine DPP conditioning formulas with
the standard DPP sampling formulas. The resulting M-k-DPP sampler can select T
sets in time O(T'N® + TNE?).

Experimentally, on the news summarization task described above, the M-k-DPP
does well. It sacrifices a small amount of article quality to produce much more diverse
sets than models that choose solely based on quality. Additionally, compared to a
model that samples from an independent k-DPP at each time step, the M-k-DPP
shows a substantial increase in between-step diversity.

For basic DPPs, learning item qualities by maximizing likelihood is a concave
optimization problem (Kulesza and Taskar, 2011b), which we will discuss in more
detail in Chapter 6. While the basic DPP sampling procedures translate well to
M-DPPs, unfortunately even this most simple of learning procedures does not; the
M-DPP log-likelihood objective is not concave for the quality-learning setting. Nev-
ertheless, Affandi et al. (2012) demonstrate a promising heuristic for learning item
qualities, inspired by standard online algorithms. Their procedure assumes that each
day a user provides feedback by marking the articles that they see as either of interest
or not of interest. From these labels, the quality scores for articles on subsequent days
are adjusted: the parameters associated with quality features for articles of interest

are increased, while those associated with the other articles are decreased.

45



3.4 ConNTINUOUS DPPs

The extension of DPPs to the continuous realm is considered in Affandi, Fox, and
Taskar (2013a), where they propose practical sampling algorithms for the resulting
DPPs. Formally, the discrete DPP sampling algorithm applies to the continuous
case, but computationally it is intractable to have N uncountable. For a continuous
space 2 C R?, L becomes an operator, L :  x © — R. The probability density of
a point configuration A C Q is then: Pr(A) o det(L,), where Ly is the |A] x |A]
matrix with entry L(z,y) for each z,y € A.

Despite the fact that N is uncountable, Affandi et al. (2013a) show that it is
possible to sample from P, by adapting the dual sampling algorithm (Kulesza, 2012,
Algorithm 3). The initial step in this algorithm only requires that the number of
features, D, be small, putting no constraint on N. Many continuous kernels are by
nature low-rank, which means that they already have a reasonable D. Many other
high- or infinite-rank kernels can be transformed into low-rank kernels by using a
Nystrom approximation or random Fourier features. This type of approximation
will be discussed in greater detail in Section 4.6.2 for discrete DPPs. For continuous
DPPs, Appendix C in the supplement of Affandi et al. (2013a) lists common kernel
types for which approximation is feasible.

Given that L (or its approximation) is low-rank, we can write it as: L(z,y) =
B(x)*B(y), where we define the operator B(z) : @ — C” and B(z)* indicates the
complex conjugate transpose. Thus, the D x D dual kernel matrix C needed for the

dual sampling algorithm can be computed by evaluating the following integral:
C= / B(z)B(x)"dz . (3.9)
Q

Given C, we can compute its eigendecomposition and begin executing the dual sam-
pling algorithm as usual. The rest of the algorithm only relies on N in the following
step:

1
Select i from Y with Pr(i) = — v B;)?.
)= 5 2078
veV
For the continuous case, this step becomes:
1

Select z from f(x) =
V]

> 0" B(@).

veV

46



Sampling directly from f(x) is usually quite difficult, but often it is possible to use
the inverse CDF method to generate a sample. That is, we can draw a number u
uniformly from [0, 1], then compute which @ corresponds to value v in f’s cumulative
density function. Appendix Cin the supplement of Affandi et al. (2013a) shows how
to do this for Gaussian and polynomial kernels.

For continuous k-DPDPs, rather than adapting the existing sampling algorithm,
Affandi et al. (2013a) instead develop a Gibbs sampler. That is, they define £ vari-
ables {x,}}_,, arbitrarily assign each x, to some value in ©, then repeatedly re-sample
each z, from the conditional density p(x; | {x;},.¢). The conditional density to sam-
ple from can be derived using Schur’s determinantal identity (recall Definition 2.3).
Letting R denote {z;};., the conditional is as follows:

plae | {@;}j20) o< L(as, ) — Y [Lg'liy L@, @) L(w;, @) (3.10)
i,j 2
This continuous k-DPP sampling method, as well as the other continuous DPP
sampling method based on the dual kernel, both have complexity linear in d, the
dimension of the space Q.

From a practical standpoint, these continuous DPP sampling methods might
help improve the results for problems where DPPs are used as priors for latent vari-
able models. For example, Zou and Adams (2013) puta DPP prior on a topic model
to encourage topics to have distinct parameter vectors (less topic overlap). This could
more cleanly be done by employing a continuous DPP. While Affandi et al. (2013a)
do not explore that particular task, one interesting application that they do experi-
ment with is density estimation: given samples from some distribution, the goal is to
model the distribution as best as possible with a mixture of a small number of Gaus-
sians. The mixture weights and the means and variances of the Gaussians must be
estimated to create such a model. Typically, the means are assumed to be indepen-
dent, but if we instead assume that they are drawn from a DPP then this encourages
diversity. For a variety of densities associated with real-world datasets (e.g. mea-
surements of galaxy velocities, measurements of lake acidity), Affandi et al. (2013a)
demonstrate that this strategy yields Gaussian mixtures that have fewer components
with large mixture weights. In other words, use of a DPP prior on the means yields
a more compact model of the data. Moreover, likelihood on heldout data is not

negatively affected by the DPP assumption.

47



Dimensionality Reduction

Many of the core DPP inference tasks have a computational complexity of roughly
O(N?®), where N is the number of items in the ground set J. As discussed in Sec-
tion 2.4, where dual kernels were defined, if it is known that the DPP kernel L is
low-rank and decomposes as a product of a D x N matrix B with its transpose, as
in L = B' B, then the computational complexity can often be reduced, with D sub-
stituting for N. While D does not entirely replace N for all inference tasks, it does
reduce the cost to such an extent that computational complexities are at worst linear
in N, rather than cubic. See Table 2.1 for exact complexities. Settings where N is so
large that even a linear dependence is unacceptable often fall under the structured
DPP umbrella, described in Section 3.2. For problems within the structured class,
inference is tractable as long as the treewidth of the associated factor graph is not too
large. 'This is similar to the tractability condition for graphical models.

In this chapter we consider the setting where both N and D are simultaneously
large. This is a challenging realm because both the N x N primal kernel L = B'B
and the D x D dual kernel C = BT B are intractable objects. Exact structured DPP
inference is not feasible here, so development of an approximation scheme is vital

for this DPP variant. Fortunately, we have recourse to dimensionality reduction

48



techniques.

The remainder of this chapter proves a bound on the change in a DPP’s dis-
tribution when D features are randomly projected down to d < D dimensions.
This bound is then applied to several example problems, including a variant of the
document summarization task. The majority of the information that this chapter
conveys can also be found in Gillenwater, Kulesza, and Taskar (2012a). We con-
clude the chapter by surveying several recent papers that present alternative means

of addressing the large- N, large-D setting.

4.1 RANDOM PROJECTIONS

A classic result of Johnson and Lindenstrauss (1984) shows that high-dimensional
points can be randomly projected onto a logarithmic number of dimensions while
approximately preserving the distances between them. This result establishes that
we can project a length-D vector B; down to a much shorter length-d vector B,
while approximately retaining the values B B;. A more recent result by Magen and
Zouzias (2008) extends this idea to the preservation of volumes spanned by sets of
points. Thatis, instead of just pairwise distances, the volume of the vectors’ parallelo-
tope is approximately preserved. Here, we use the relationship between determinants
and volumes, established in Sections 1.2 and 2.1, to adapt the latter result. The pri-
mary adaptation necessary is to bound the change in the DPP’s normalization term.
As this term is a sum over an exponential number of volumes, it is not immediate
that a good bound on change in volume implies a good bound on change in DPP
probabilities.

We first state a variant of Magen and Zouzias (2008)’s result, which bounds the

ratio of volumes before and after projection from D down to d dimensions.

Lemma 4.1. Let B be a D x N matrix. Fixk < N and 0 < €,6 < 3, and set the

projection dimension d to:

B 2k 24 (log(3/9)

Let G be a d x D random projection matrix whose entries are randomly sampled from a

49



normal distribution with mean zero and variance é:

Gy~ N (0, é) | 4.2)

Let By forY C {1,...,N} denote the D x |Y| matrix formed by taking the columns
of B corresponding to the indices in'Y. Then for all Y with cardinality at most k, with
probability at least 1 — 6 we have:

(1— o < vol(GBy)

- VOI(BY) S (1 " 6)‘Y‘ , (43)

where vol(By) is the k-dimensional volume of the parallelotope spanned by the columns
0f By.

Practically, Lemma 4.1 says that for any set of N points, randomly projecting

d=0 (max {ﬁ, log (1/9) i log(N) | k}> (4.4)

down to:

€ €
dimensions approximately preserves all volumes with high probability. We can lever-
age this result to quantify the effectiveness of random projections for DPPs. Recall

the following relationship between determinants and volumes:

vol(By) = \/det(By By) . (4.5)

This equivalence implies that Lemma 4.1 is in fact a bound on determinants as well
as on volumes. For DPPs we are interested in bounding not only the change in
individual determinants, but also the total change in a sum of many determinants.
This is necessary in order to handle the DPP normalization constant. The following
lemma provides a bound on the change in a k-DPP’s normalization constant when

random projections are applied.

Lemma 4.2. Under the same conditions as Lemma 4.1, with probability at least 1 — §

we have:

D viyi=h det((GBy)'(GBy))
DYy det(By By)

(1426)72% < < (14 €)%, (4.6)

50



Proof.

> de(GBTGB) = > (vol(GBy))* (4.7)
o > Y;k (vol(By)(1 — €)*)? (4.8)
:(1._:)% S (vol(By))? (4.9)
2(1+2€)—Z’;Y£: det(By By). (4.10)

YAV ok

The first inequality holds with probability at least 1 — 6 by Lemma 4.1. The third
follows from the fact that (1 — €)(1 + 2¢) > 1 (since € < 1/2), and thus, raising this
expression to the 2k power, (1 —¢€)?* > (1+2¢)~?*. The upper bound follows directly
from Lemma 4.1:

3" det((GBy) (GBy) < Y (vol(By)(1 — e)¥)’ (4.11)
Y:|Y|=k Y:|Y|=k
=(1—-¢* > det(ByBy). (4.12)
Y:|Y|=k

[]

This bound on the DPP normalization constant can be exploited to yield a bound
on a measure of distributional similarity. Formally, let P be the DPP’s probability
measure before the features B that define the DPP kernel L = BT B are projected.
Let P be the distribution after projection. Ideally, we want a bound on the total

variational distance between P and P. The formula for L; variational distance is:

IP=Plh= > [PY)-P). (4.13)

Y:YCV

Theorem 4.3 bounds the k-constrained version of this quantity.

Theorem 4.3. Let P* be the k-DPP distribution associated with kernel L = B' B for
B € RP*N. Let d be as in Equation (4.1) and let G be a d x D random projection
matrix, as defined in Lemma 4.1. Finally, let P* be the k-DPP distribution associated
with kernel L = (GB)"(GB). Then for 0 < ¢,6 < L, with probability at least 1 — & we
have:

|P* — PF|| < efF—1. (4.14)

51



Note that €5 — 1 ~ 6ke when ke is small.

Proof. Starting from the definition of L, variational distance, we have:

IPF=Prl= D [PHY) —PHY) (4.15)
Y:|Y|=k
k PhY
_ lYlZ:kP (V) |1 - PkEY§ (4.16)

B det([GBY][GBy])  Zyyi—k det(By. By’)
= 2 PN T BIBy) Sy ded(GELIGEy )

[Y|=k

< 1=+ (1+20% > PHY) (4.17)
Y:|Y|=k

= |1 = (14 €)*"(1 + 2¢)*] (4.18)

< |1 — 6%664]“‘ (4.19)

A (4.20)

The first inequality follows from Lemmas 4.1 and 4.2, which hold simultaneously
with probability at least 1 — §. The second inequality follows from (1 + a)® < e® for
a,b> 0. []

Given these bounds on random projections for DPPs, we can now apply them
to handle the large- NV, large-D setting. Specifically, combining dual DPP algorithms
with the smaller number of features d < D makes approximate inference possible

for structured DPPs.

4.2 'THREADING k-SDPPs

To empirically verify the efficacy of random projections, we test this dimensional-
ity reduction technique on several structured k-DPP applications. We will refer to
structured k-DPPs as k-SDPPs. The inference techniques for SDPPs and k-DPDs,
developed in Kulesza and Taskar (2010) and Kulesza and Taskar (2011a), respec-
tively, are summarized in Sections 3.2 and 3.1. They combine seamlessly, such that
the computational complexity of the SDPP sampling procedure is unchanged. Re-
call that, given the eigendecomposition of the dual kernel C, sampling an SDPP is

52



an O(D?*k* + DM°RE?) operation. The k here is the number of structures in the
sampled set, R is the number of parts in a structure, M is the number of values a
part y, can take on, and ¢ is the maximum degree of any factor node. Also recall
that the kernel C itself takes O(D?M*“R) time to compute, and O(D¥) time to eigen-
decompose. With random projections, we can change the D factors in all of these
expressions to d < D. Then, the only place that D will occur in our algorithms is
in the random projection step itself. This projection takes O(M°RDd) time, as it
corresponds to the multiplication of a d x D projection matrix G by a D x MR
matrix that contains all of the feature values for the structured DPP factors.

In what follows, we will use the notation from Section 2.5, which decomposes
a structure y’s feature vector B(y) into a quality score ¢(y) and similarity features

#(y). With this notation, the probability of a set Y under a k-SDPP is:

( I1 q(y)) det (¢(Y) "¢(Y))

Yy yey

Pr(Y) = , (4.21)
Y/_;Cy < 11 /q(y)) det (¢(Y")To(Y"))
v e

where ¢(Y) denotes the D x |Y| matrix consisting of columns ¢(y) fory € Y. We
assume that ¢ and ¢ factor over the parts of a structure, as in Equation (3.0).

The structure on which our experiments operate is a thread—a singly-linked
chain. In all cases, the threading application takes the form of finding diverse, high-
quality paths (threads) in a directed graph. More concretely, suppose that we have
an M-node graph. Let the ground set Y of our DPP consist of all length-R paths in
the graph. Each y € Y is then a sequence [y, . .., yr] where each y, is a graph node
and nodes y,, y,+1 are connected by an edge in the graph. For a complete graph,
there are N = M* such possible threads. While we only consider the setting where
the length R is identical for all threads, note that it is also possible to allow threads
of variable length. This effect can be achieved by adding a single “dummy” node
to the graph, with incoming edges from all other nodes and a single outgoing self-
loop edge. Shorter threads will simply transition to this dummy node when they are
complete.

Let the quality of a path in the M-node graph decompose based on the quality

53



Figure 4.1: Each column shows two samples drawn from a k-SDPP; from left to
right, k = 2,3, 4. Circle size corresponds to city quality.

of individual nodes and edges, so that for a path y of length R we have:

R R B
Q(y) = <H Q(yr) H Q(yr—la yr)) ) (422)

r=2

where f is a hyperparameter controlling the dynamic range of the quality scores.
Similarly, let the similarity features for a path in the graph decompose along the

same lines:
R R

¢(y) = Z ¢(yr) + Z ¢<yr—17 yr) : (423)

r=1 r=2
With these definitions for quality and similarity, the nodes in the corresponding
factor graph have degrees in {1,2}. This makes ¢ = 2, resulting in a computational
complexity of O(D?*M?*R) for computing C, or O(d*M?R) after applying random

projections.

4.3 TOY EXAMPLE: GEOGRAPHICAL PATHS

We begin by demonstrating the performance of random projections on a small, syn-
thetic threading task where the exact model is tractable, with A/ = 200 nodes and
D = 200 similarity features. The goal in this case is to identify diverse, high-quality
sets of travel routes between the 200 most populous U.S. cities. Each of these routes

is a “thread”, and the associated graph has one node per city. Every city is connected

54



1.2¢

3 ls o
S Q
8 08t g
R Q2
o ~—
= o
S o06f 298
S 2
8 5
: 04 :
— 11 =
-

0.21

0 50 100 150
Projection dimension

Figure 4.2: The effect of random projections. In black, on the left, we estimate the
L, variational distance between the true and projected models. In blue, on the right,
we plot the memory required for sampling. Runtime is proportional to memory use.

to every other city by an edge. In order to disallow paths that travel back and forth
between the same cities though, we augment the nodes to include arrival direction.
We then assign a quality score of zero to paths that return in the direction from
which they came. This does not technically preclude paths with cycles of length > 2,
but we find that it is in practice sufficient to prevent cycling.

For establishing path quality, we set the quality of a city ¢(y,) to the Google hit
count of the city name, so that paths through popular cities are preferred. Pairwise
factors q(y,—1,y,) are defined to control path cycling, as described above.

We consider two routes to be diverse if they are well-separated geographically.
To achieve this effect, we set the similarity features of a city ¢(y,) as the vector of
inverse distances between 7, and each of the M = 200 cities. This makes D = 200,
too. If cities y; and y; are distance a apart, then 1 will be large for small distances,
making the similarity score ¢(y;) " ¢(y;) large. This clearly encourages paths to travel
through diverse regions of the country. We do not define pairwise factors ¢(y,—1,y,)
for this application, but this does not change the overall computational complexity
analysis from the previous section.

Given these definitions, the threading £-SDPP is fully specified and we can sam-
ple from it. Figure 4.1 shows sets sampled with path length R = 4 and various values

of k. For k = 2, the model tends to choose one path along the east coast and one

55



1

Figure 4.3: An illustration of document collection threading. We first build a graph
from the collection, using measures of importance and relatedness to weight nodes
(documents) and build edges (relationships). Then, from this graph, we extract a
diverse, salient set of threads to represent the collection.

along the west. As k increases, a wider variety of configurations emerge. They con-
tinue, though, to emphasize popular cities and to remain relatively geographically
diverse.

For this small, structured model we can easily investigate the effects of random
projections. Figure 4.2 shows the L, variational distance between the original model
and the projected model (estimated by sampling), as well as the actual memory re-
quired for a variety of projection dimensions d. As predicted by Theorem 4.3, fidelity
to the true model increases rapidly with d, such that we only require a small number

of dimensions to approximate the model well.

4.4 THREADING DOCUMENT COLLECTIONS

We now describe the application of the threading structure plus random projections
method to a more practical class of problems: summarizing large document collec-
tions. The increasing availability of large document collections has the potential to
revolutionize our ability to understand the world. However, the scale and complex-
ity of such collections frequently make it difficult to quickly grasp the important
details and the relationships between them. As a result, automatic interfaces for data
navigation, exploration, aggregation, and analysis are becoming increasingly valu-
able.

Consider a large graph, with documents as nodes, and edges indicating relation-
ships between documents whose semantics depend on the exact task. The sets of
threads we can obtain from a k-SDPP model over this graph could serve as a corpus

summary. Figure 4.3 illustrates the document collection threading process.

56



Go(y)
0.18
0.16
0.12
0.12 G
0.1 '
0.08
0.06
0.04
0.02
o

Figure 4.4: Left: The thousands of word features associated with a single document.
(This is shown as a v/D x v/D matrix rather than a D x 1 vector to fit this illustration
on a single page.) Notice that most features have value zero, as any given article
contains only a small fraction of the total number of vocabulary words. Right: The
d = 50 features resulting from the application of a random projection matrix G.

If threads are high-quality, then they will represent salient aspects of the corpus.
If a set of threads is diverse, then each individual thread will tend to be compact
and hence coherent. For example, given a collection of academic papers, a thread
set could identify the most significant lines of research in a citation graph by select-
ing chains of important papers. Or, given news articles connected chronologically,
article threads could form timelines describing the major events from the most sig-
nificant news stories. Top-tier news organizations like The New York Times and The
Guardian regularly publish such timelines, but have so far been limited to creating
them by hand. We explore these two applications, academic citation threads and
news article timelines, in the following two subsections.

In these experiments we typically have at least M = 30,000 documents. If we
make use of the most natural feature set, the vocabulary, then there are also tens
of thousands of features, D. For M, D > 30,000, storing a single message for the
message-passing routine involved in SDPP sampling would require over 200 ter-
abytes of memory. Hence, this is a setting where random projections are essential
for efhiciency. We will project D down to d = 50 in our experiments. To give a better
sense of the scale of this change, Figure 4.4 shows a typical word-based feature vector

for a single document and the corresponding random projection for d = 50.

57



4.4.1 RELATED WORK

The Topic Detection and Tracking (TDT) program (Wayne, 2000) has led to some
research in this direction. Several of TDT’s core tasks, like link detection, topic
detection, and topic tracking, can be seen as subroutines for the threading problem.
Graph threading with £-SDPPs, however, addresses these tasks jointly, using a global
probabilistic model with a tractable inference algorithm.

Other work in the topic tracking literature has addressed related tasks (Mei and
Zhai, 2005; Blei and Lafferty, 2006; Leskovec, Backstrom, and Kleinberg, 2009;
Ahmed and Xing, 2010). In particular, Blei and Lafterty (20006) introduced dynamic
topic models (DTMs), which, assuming a division of documents into time slices,
attempt to fit a generative model whose topics evolve over time. In each slicea DTM
draws a set of topics from a Gaussian distribution whose mean is determined by the
topics from the previous slice. In this sense, a DTM can be viewed as a mechanism
for generating fopic threads. These are related to document threads, but do not
consist of actual items from the dataset. In our experiments we engineer a baseline
for constructing document threads from DTM topic threads, but the topic-centric
nature of DTMs means that they are not ideal for this task. The work of Ahmed
and Xing (2010) generalizes DTMs to iDTMs (infinite DTMs) by allowing topics
to span only a subset of time slices, and allowing an arbitrary number of topics.
However, iDTMs still require placing documents into discrete epochs, and the issue
of generating topic rather than document threads remains.

In the information retrieval community there has also been work on extracting
temporal information from document collections. Swan and Jensen (2000) pro-
posed a system for finding temporally clustered named entities in news text and
presenting them on a timeline. Allan, Gupta, and Khandelwal (2001) introduced
the task of temporal summarization, which takes a stream of news articles on a par-
ticular topic and tries to extract sentences describing important events as they occur.
Yan, Wan, Otterbacher, Kong, Li, and Zhang (2011) evaluated methods for choos-
ing sentences from temporally clustered documents that are relevant to a query. In
contrast, graph threading seeks not to extract grouped entities or sentences, but in-
stead to organize a subset of the objects (documents) themselves into threads, with

topic identification as a side effect.

58



There has also been some prior work focused more directly on threading. Shahaf
and Guestrin (2010) and Chieu and Lee (2004) proposed methods for selecting
a single thread, while Shahaf, Guestrin, and Horvitz (2012) proposed metro maps
as alternative structured representations of related news stories. Metro maps are
effectively sets of non-chronological threads that are encouraged to intersect and
thus create a “map” of events and topics. However, these approaches assume some
prior knowledge about content. Shahaf and Guestrin (2010), for example, assume
the thread endpoints are specified, and Chieu and Lee (2004) require a set of query
words. These inputs make it possible to quickly pare down the document graph.

In contrast, we apply graph threading to very large graphs and consider all possible
threads.

4.4.2 SETUP

We already specified the form of ¢(y) and ¢(y) in Equations (4.23) and (4.22),

respectively, but it remains to establish definitions for their sub-functions: ¢(y,),

4(Yr—1,Yr)> &(yr), and @(yr—1, yr).

Pairwise node qualities, ¢(y,_1,y,): The pairwise quality scores reflect the degree
of textual similarity between the two documents that they couple. We exploit tf-
idf vectors to define these scores. 'The tf-idf vectors were generated in the following
manner: first, the text for all documents was tokenized; second, stop words and
punctuation were discarded; third, for each remaining word w the inverse document
Sfrequency idf(w) was computed. This idf(w) is the negative logarithm of the fraction
of documents that contain the word w. The term frequency tf,(w) is the number
of times the word w appears in document y. Given these idfs and tfs, we have the

following definition for entry w of the tf-idf vector for document y:
[tf-idf(y)], o< tf, (w)idf(w) . (4.24)

By computing normalized cosine similarity (NCS) between the tf-idf vector of doc-

ument y,_; and document y,, we arrive at the final formula for our pairwise quality

59



scores. Letting W indicate the set of all vocabulary words, the NCS score is:

>y, (w)ehy, (w)idf* (w)
NCS(y,_1,y,) = welW . (4.25)
S oif, (w)idf(w), [ 3t (w)idf (w)

weWw weW

Individual node qualities, ¢(y): For the quality score of each individual graph node,
we use LexRank scores (Erkan and Radev, 2004), which are similar to node degrees.
The LexRank score is the stationary distribution of a thresholded, binarized, row-
normalized matrix of cosine similarities, plus a damping term, which we fix at 0.15.
LexRank is a measure of salience; papers closely related to many other papers receive

a higher LexRank score.

Individual node similarity features, ¢(y): To get similarity features of each indi-
vidual document, we again exploit its tf-idf vector. We could use this tf-idf vector
directly as the similarity feature vector, but in preliminary experiments we found
that a derivative measure of similarity was more effective. Specifically, we represent
each document by the 1000 documents to which it is most similar according to NCS;
this results in binary ¢ of dimension D = M with exactly 1000 non-zeros. We scale
#(y) such that [|¢(y)|| = 1. The dot product between the similarity features of two
documents is thus proportional to the fraction of top-1000 documents they have in
common. As described earlier, the final step is to randomly project this large feature

set from D ~ 30,000 down to d = 50 dimensions.

Pairwise node similarity features, ¢(y,_1,y,): We do not bother to define similarity
features on pairs of nodes, but this is a simple extension that could be used to improve
thread coherence. Note that adding these pairwise similarity features would not

change the asymptotic runtime, as we already have pairwise quality features.
With these quality and similarity features in place, we are now ready to describe

experiments on two document summarization tasks: generating academic citation

threads and news article timelines.

60



4.4.3 ACADEMIC CITATION DATA

The Cora dataset is a large collection of academic papers on computer science topics,
including citation information (McCallum, Nigam, Rennie, and Seymore, 2000).
We construct a directed graph with papers as nodes and citations as edges. After re-
moving papers with missing metadata or zero outgoing citations, our graph contains
M = 28,155 papers. The average out-degree is 3.26 citations per paper; 0.011% of
the total possible edges are present. We apply the word filtering described in Sec-
tion 4.4.2, additionally removing words that are too common, appearing in more
than 10% of the papers, or too rare, appearing in only one paper. After this, there are
50,912 unique words remaining. We did not perform a quantitative evaluation for
this dataset, but Figure 4.5 illustrates the behavior of the associated £-SDPP model
when we project down to d = 50 dimensions. Samples from the model, like the one
presented in the figure, offer not only some immediate intuition about the types
of papers contained in the collection, but, upon examining individual threads, pro-
vide a succinct illustration of the content and development of sub-areas of computer

science research.

4.4.4 INEWS ARTICLES

For quantitative evaluation, we use newswire data. This dataset comprises over
200,000 articles from the New York Times, collected from 2005-2007 as part of the
English Gigaword corpus (Graff and C., 2009). We split the articles into six-month
time periods. Because the corpus contains a significant amount of noise in the form
of articles that are short snippets, lists of numbers, and so on, we filer the results by
discarding articles that are more than two standard deviations longer than the mean
article, articles that contain less than 400 words, and articles whose fraction of non-
alphabetic words is more than two standard deviations above the mean. On average,
for each six-month period, we are left with M = 34,504 articles. We apply the word
filtering described in the previous section, additionally removing words that are too
common, appearing in more than 15% of the articles, or too rare, appearing in less
than 20 articles. After filtering, there are a total of 36,356 unique words.

Next, we generate a graph for each time period with articles as nodes. As we do

not have citations to define the graph edges, we instead use NCS, Equation (4.25), to

61



learning lifelong

training tasks
invariances control
L]

\ mobile clients hoard server , e,
. client database S

delay interconnect ‘e .‘:’.
wiresizing elmore-based -’ . 2
. NJ
routing tree LA AR
) ... .
hd L]
L] X ° .
»®e o
x
)
ot

policy decision
markov pomdps
partially uncertainty

N N =

Thread: learning lifelong training tasks invariances control

. Locally Weighted Learning for Control
Discovering Structure in Multiple Learning Tasks: The TC Algorithm
. Learning One More Thing

. Explanation Based Learning for Mobile Robot Perception

. Learning Analytically and Inductively

AL

Thread: mobile clients hoard server client database

A Database Architecture for Handling Mobile Clients

An Architecture for Mobile Databases

Database Server Organization for Handling Mobile Clients
Mobile Wireless Computing: Solutions and Challenges in Data Management

Energy Efficient Query Optimization

Figure 4.5: Example threads sampled from a 4-SDPP with thread length R = 5 on
the Cora dataset. Above: We plot a subset of the Cora papers, projecting their tf-
idf vectors to two dimensions by running PCA on the centroids of the threads. The
documents of a thread are shown connected by colored edges. Displayed beside each
thread are a few of the its highest tf-idf words. Below: Paper titles from two of the
threads.

62




generate edge weights, and throw away edges with weight < 0.1. We also require that
edges go forward in time; this enforces the chronological ordering of threads. The
resulting graphs have an average of 0.32% of the total possible edges, and an average
degree of 107. We set ¢ and ¢ as described in Section 4.4.2, with one modification:
we add a constant feature p to ¢, which controls the overall degree of repulsion; large
values of p make all documents more similar. We set p and the quality model hyper-
parameter /3 from Equation (4.22) to maximize a cosine similarity evaluation metric
described below, using the data from the first six months of 2005 as a development
set. Finally, we use random projections to reduce ¢ to d = 50 dimensions. For all
of the following experiments, we use £ = 10 and R = 8. All evaluation metrics
we report are averaged over 100 random samples from the k-SDPP model for each

six-month period.

GRAPH VISUALIZATIONS

At http://zoom.it/jOKV, the news graph for the first half of 2005 can be viewed
interactively; placing the graph in this thesis would be impractical since the com-
putational demands of rendering it, and the zooming depth required to explore it,
would exceed the capabilities of modern document viewers. In this graph each node
(dark circle) represents a news article, and is annotated with its headline. Node size
corresponds to quality (LexRank score). Nodes are laid out chronologically, left-to-
right, from January to June of 2005. The five colored paths indicate a set of threads
sampled from the £-SDPP. Headlines of the articles in each thread are colored to
match the thread. Due to the scale of the dataset, it is difficult to display all edges,
so only 1% of the edges are shown. Edge thickness corresponds to document pair
quality (NCS).

In Figure 4.6 we provide a view of a small subgraph of the full news graph for
illustration purposes. It shows just the incoming and outgoing edges for a single
node. In the digital version of this thesis, Figure 4.6 can be zoomed in order to read

the headlines. As an alternative though, a zoomable version of this subgraph is also

available at http://zoom.it/GUCR.

63


http://zoom.it/jOKV
http://zoom.it/GUCR

Figure 4.6: Snapshot of a single article node and all of its neighboring article nodes.
See http://zoom.it/ GUCR for the zoomable image.

BASELINES

We compare the £-SDPP model to two other thread selection methods.

k-means baseline: A simple baseline is to split each six-month period of articles
into R equal time slices, then apply k-means clustering to each slice, using NCS to
measure distance. We can then select the most central article from each cluster to
form the basis of a set of threads. Suppose we match the £ articles from time slice r
one-to-one with those from slice » — 1 by computing the pairing that maximizes the
average NCS of the pairs, i.c., the coherence of the threads. Repeating this process
R —1 times, the result is a set of & threads of length R, where no two threads contain
the same article. Note though that because clustering is performed independently
in each time slice, it is likely that the threads will sometimes exhibit discontinuities;

the articles chosen in successive times slices may not always naturally align.

DTM baseline: A more sophisticated baseline is the dynamic topic model (Blei and

64


http://zoom.it/GUCR

Lafferty, 2006), which explicitly attempts to find topics that are smooth through
time. We run the publicly available code from Blei and Lafferty (2000) to fit DTMs,
with the number of topics set to k£ and with the data split into R equal time slices.
We then choose, for each topic at each time step, the document with the highest
per-word probability of being generated by that topic. Documents from the same

topic form a single thread.

Figure 4.7 shows threads sampled from the k-SDPD, and Figure 4.8 shows threads
from the DTM baseline for the same time period. Qualitatively, the k-SDPP pro-
duces more consistent threads. The DTM threads, though topic-focused, are less
coherent as a story. Furthermore, DTM threads span the entire time period, while
our method has the flexibility to select threads covering only relevant spans. The
quantitative results to which the remainder of this section is devoted underscore the

empirical value of these characteristics.

COMPARISON TO HUMAN SUMMARIES

As an initial quantitative evaluation of our method, we compare the threads gener-
ated by the baselines and sampled from the k-SDPP to a set of human-generated
news summaries. The human summaries are not threaded; they are flat, roughly
daily news summaries found in the Agence France-Presse portion of the Gigaword
corpus, distinguished by their “multi” type tag. The summaries generally focus on
world news, which does not cover the entire spectrum of articles in our dataset. Nev-
ertheless, they allow us to provide an extrinsic evaluation for this novel task without
generating gold standard thread sets manually, which would be a difhicult task for a

corpus of this size. We compute four metrics:

* Cosine similarity: We concatenate the human summaries from each six-
month period to obtain a target tf-idf vector. We also concatenate the set of
threads to be evaluated to obtain a predicted tf-idf vector. For these vectors
we compute the NCS (in percent) between the target and predicted vectors.
The hyperparameters for all methods—such as the constant feature magnitude
p for k-SDPPs and the parameter governing topic proportions for DTMs—

were tuned to optimize cosine similarity on a development set consisting of

65



iraq iraqi killed baghdad arab marines deaths forces
social tax security democrats rove accounts
owen nominees senate democrats judicial filibusters
israel palestinian iraqi israeli gaza abbas baghdad

pope vatican church parkinson

Jan08 Jan28 Feb17 Mar09 Mar29 April8 May08 May28 Jun1l7

Feb 24: Parkinson’s Disease Increases Risks to Pope

Feb 26: Pope’s Health Raises Questions About His Ability to Lead

Mar 13: Pope Returns Home After 18 Days at Hospital

Apr 01: Pope’s Condition Worsens as World Prepares for End of Papacy
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers

Apr 18: Europeans Fast Falling Away from Church

Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name

Figure 4.7: A set of five news threads generated by sampling from the k-SDPP for
the first half of 2005. Above, the threads are shown on a timeline with the most
salient words superimposed; below, the dates and headlines from the lowest thread
are listed. The headlines indicate that this thread constitutes a coherent news story.

66



hotel kitchen casa inches post shade monica closet
mets rangers dodgers delgado martinez astacio angels mientkiewicz
social security accounts retirement benefits tax workers 401 payroll
palestinian israel baghdad palestinians sunni korea gaza israeli

cancer heart breast women disease aspirin risk study

Jan08 Jan28 Feb1l7 Mar09 Mar29 Aprl8 May08 May?28 Jun17

Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients—and Many Doctors—Still Don’t Know How Often Women
Get Heart Disease
Mar 07: Aspirin Therapy Benefits Women, but Not in the Way It Aids Men
Mar 16: Study Shows Radiation Therapy Doesn’t Increase Heart Disease Risk
for Breast Cancer Patients
Apr 11: Personal Health: Women Struggle for Parity of the Heart
May 16: Black Women More Likely to Die from Breast Cancer
May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients
Jun 21: Another Reason Fish is Good for You

Figure 4.8: A set of five news threads generated by a dynamic topic model for the first
half of 2005. Above, the threads are shown on a timeline with the most salient words
superimposed; below, the dates and headlines from the lowest thread are listed. Topic
models are not designed for document threading and often link together topically
similar documents that do not constitute a coherent news narrative.

67



Cosine ROUGE-1 ROUGE-2 ROUGE-SU4
Sim F Prec/ Rec F Prec / Rec F Prec/ Rec

k-means | 29.9 | 16.5 17.3/15.8 | 0.695 0.725/0.669 | 3.76 3.94/3.60
DTM 27.0 | 14.7 15.5/14.0 | 0.750 0.813/0.698 | 3.44 3.63/3.28

E-SDPP | 33.2 |17.2 17.7/16.7 | 0.892 0.917/0.870 | 3.98 4.11/3.87

Table 4.1: Similarity of automatically generated timelines to human summaries.
Bold entries are significantly higher than others in the column at 99% confidence,
computed using bootstrapping (Hesterberg et al., 2003).

the articles from the first six months of 2005.

* ROUGE-1, 2, and SU4: ROUGE is an automatic evaluation metric for text
summarization based on n-gram overlap statistics (Lin, 2004). We report three
standard variants: unigram match, bigram match, and skip bigram with max-

imum gap length of 4.

Table 4.1 shows the results of these comparisons, averaged over all six half-year
intervals. According to every metric, the k-SDPP threads more closely resemble

human summaries.

MECHANICAL TURK EVALUATION

As a secondary quantitative evaluation, we employ Mechanical Turk, an online mar-
ketplace for efficiently completing tasks that require human judgment. We asked
Turkers to read the headlines and first few sentences of each article in a timeline and
then rate the overall narrative coherence of the timeline on a scale of 1 (“the arti-
cles are totally unrelated”) to 5 (“the articles tell a single clear story”). Five separate
Turkers rated each timeline. The average ratings are shown in Table 4.2. Note that
k-means does particularly poorly in terms of coherence since it has no way to ensure
that clusters are similar between time slices.

We also had Turkers evaluate threads implicitly by performing a second task. We
inserted two “interloper” articles selected at random into timelines, and asked them
to remove the two articles that they thought should be eliminated to “improve the
flow of the timeline”. A screenshot of the task is shown in Figure 4.9. Intuitively,

the interlopers should be selected more often when the original timeline is coherent.

68



Rating Interlopers

k-means | 2.73 0.71
DTM | 3.19 1.10

k-SDPP | 3.31 1.15

Table 4.2: Rating: average coherence score from 1 (worst) to 5 (best). Interlopers:
average number of interloper articles identified (out of 2). Bold entries are signifi-

cantly higher with 95% confidence.

Runtime

k-means 625.63
DTM | 19,433.80

k-SDPP 252.38

Table 4.3: Time (in seconds) required to produce a complete set of news threads.

The test machine has eight Intel Xeon E5450 cores and 32GB of memory.
The average number of interloper articles correctly identified is shown in Table 4.2.

RUNTIMES

Finally, we report in Table 4.3 the time required to produce a complete set of threads
for each method. We assume tf-idf and feature values have been computed in ad-
vance (this process requires approximately 160 seconds), as these are common to all
three threading methods. The time reported in the table is thus the time required
for: clustering in k-means; model fitting for the DTM baseline; and random pro-
jections, computation of the dual kernel, and sampling for the k-SDPP. As can be
seen from the runtimes in table, the k-SDPP method is about 2.5 times faster than

k-means, and more than 75 times faster than the DTM.

4.5 RELATED RANDOM PROJECTIONS WORK

The d x D random projection matrix G of Theorem 4.3 has Gaussian entries G;; ~
N (0,%). Many alternatives to this form of G have been studied. For example,
Achlioptas (2002) showed that distances between points are approximately preserved

69



Edit a news timeline

» You will see a series of news headlines arranged chronologically.

» Your goal is to help the timeline tell a single clear story.

» Please select exactly two articles that you think should be removed to improve the flow of the timeline.
» If you aren't sure, use your best judgment.

« To get more information, you can hover your mouse over a headline to see the beginning of the article text.

1 Jan 06, 2005: GM TO ABSORB AND REPACKAGE MONEY-LOSING SATURN

2 )Jan 06, 2005: DEMOCRATS TRY TO ALTER SOCIAL SECURITY DEBATE

3 Jan 08, 2005: 2042 AND ALL THAT: UNTANGLING THE DEBATE ON SOCIAL SECURITY

4 - Feb 04, zo05: PRIVATELY OPERATED TOLL ROADS, COMMON IN EUROPE, MAY BE THE FUTURE IN THE U.S.
5 O Apr 02, 2005: FEW SEE GAINS FROM SOCIAL SECURITY TOUR

6 Apr 19, 2005: CLOSING DOWN THE SENATE WON'T HELP DEMOCRATS

7 0 Apr 21, 2005: SENATE MOVES CLOSER TO NUCLEAR OPTION WITH COMMITTEE APPROVAL OF BUSH
JUDICIAL NOMINEES

8 (May 17, 2005: SENATE MODERATES SEEK FILIBUSTER COMPROMISE AFTER LEADERS FAILED
9 [/ May 24, 2005: AS BATTLE APPROACHED, BOTH SIDES DUG IN

10 [ Jun 07, 2005: SENATE SET FOR BROWN CONFIRMATION VOTE

Please rate the quality of the final timeline on a scale of 1-5:

= 1 means that the articles are totally unrelated.
» 5 means that the articles tell a single clear story.

123 45

Figure 4.9: A screenshot of the Mechanical Turk task presented to annotators.

70




when G is defined as follows:

+1  with probability ¢,
3
Gij = \/g 0  with probability 2, (4.26)
—1  with probability .

This definition of G is relatively sparse, which means that its product with B (the
D x N matrix that we are interested in projecting) can be computed more quickly
than when the entries of G are drawn from a Gaussian. More precisely, since only
one-third of this G is non-zero (in expectation), the product GB can be computed
roughly 3 times faster.

More recent work by Ailon and Chazelle (2009) obtains a super-constant
speedup by defining G = RST for a d x D sparse matrix R, a D x D Walsh-
Hadamard matrix S, and a D x D diagonal matrix 7. The entries of these matrices

are as follows:

N (0,2 ith probability ¢,
R, - ( q) with probability ¢ (4.27)
0 with probability 1 — ¢,
1 i1
Sij = 5(—1)<Z b (4.28)
D — +1  with probability §, (4.29)
—1 with probability 1,

where (i, j) is the modulo-2 dot product of the bit vectors expressing i and j in
binary, and ¢ = min{O((log” N)/D), 1} for approximately preserving pairwise dis-
tances under the ¢,-norm. This R matrix can be sparser than the G matrix of Achliop-
tas (2002). It will not necessarily preserve pairwise distances if applied directly to
B, as it can interact poorly if B itself is also sparse, but the pre-conditioning of
B by ST serves to ensure that such bad interactions are low-probability. Ailon
and Chazelle (2009) show that the subsequent GB projection can be performed
in O(Dlog D + min{De 2log N, e 2log’ N'}) operations.

It would be advantageous, in terms of runtime, for DPP algorithms to use the G
matrices of Achlioptas (2002) and Ailon and Chazelle (2009) rather than a Gaussian

G. Unfortunately though, these projections are only known to preserve pairwise

71



distances, not volumes. Thus, one possible avenue for future research would be to see
if the pairwise distance preservation proofs can be extended to volumes. However,
even if this is possible, note that the speedups achieved for computing the projection
G B may be dwarfed by the time required for sampling from the resulting DPP. In
our experiments on news data, the GB projection was not the most time-intensive
operation.

A more practical direction, for future work on alternative forms of the projec-
tion matrix G, might be to search for a projection that tightens the existing volume-
preservation bounds of Magen and Zouzias (2008). It seems somewhat unlikely
though that any uninformed approach, where G does not take into account any in-
formation about B, will do a significantly better job of preserving volumes. One
approach that does take various statistics of B into account when reducing the di-
mension from D to d is the Nystrom approximation. As there is existing related
work applying this approximation to DPPs, we will discuss it further in the follow-

ing section.

4.6 RELATED DPP wORK

We conclude this chapter’s discussion of the large-V, large-D setting by summariz-
ing some recent related DPP work. The first of the two papers we survey in this
section, Kang (2013), proposes several Markov chain Monte Carlo (MCMC) sam-
pling methods for DPPs. Initially, one of these seemed especially promising for the
large-N setting, as the mixing time stated in Kang (2013) is N-independent. Un-
fortunately though, this mixing time is incorrect. We show here that these MCMC
algorithms are not eflicient for the general case (encompassing all positive definite
kernel matrices), as it is impossible to prove fast mixing times without some stronger
assumptions on the eigenvalues. We give examples illustrating this. The second pa-
per we survey, Affandi et al. (2013b), focuses on reducing the number of items N
by first selecting a few “landmark” items. In contrast to random projections, this
approach can handle not just a large number of features, D, but even an infinite
number. It also comes with approximation bounds that are potentially tighter than
those of the random projections approach. However, at first glance it appears that

this approach is not compatible with structured DPPs, due to its use of a pseudoin-

72



verse. Despite this apparent incompatibility, we extend Affandi et al. (2013b)’s work
to show here one way that its guarantees can carry over to the setting where a few
landmark features are sampled instead. This opens up the possibility of applying the

method to a structured application.

4.6.1 MCMC SAMPLING

Kang (2013) proposes a method for sampling from a DPP that avoids the initial
eigendecomposition step. Specifically, the proposed algorithm falls into the class of
Markov chain Monte Carlo (MCMC) methods. It proceeds as follows. Starting
from a random set Y, sample an item 7 uniformly at random from Y. If i is already

in Y, remove it with probability:

. det(Ly\{Z})
If i is not in Y, add it with probability:
) dCt(LyU{i})
mln{l,m} . (4.31)

Naively computing these transition probabilities would not result in an asymptoti-
cally faster algorithm than standard DPP sampling algorithms, such as Algorithm 2:
computing any single det(Ly) costs O(]Y'|*), and |Y| could be as large as N. How-
ever, by applying the Schur determinant identity (recall Definition 2.3), it is possible
to compute each of these ratios in O(|Y]?) time.

Let 7y (e) represent this Markov chain’s mixing time. That is, after 7 (€) steps,
the chain produces a sample that is guaranteed to be from a distribution e-close to
Py, in terms of total variation. This yields an algorithm that can generate a sample
in O(k*7(e)) time, where k is the average size of Y encountered as the Markov chain
is mixing. If the mixing time is fast enough, then this procedure could generate
an initial sample more quickly than the basic DPP sampling algorithms such as
Algorithm 2. However, no proof of a fast mixing time is known, as the mixing
time derivation given in Kang (2013) is incorrect. In fact, we can show that, absent
additional assumptions beyond L being positive definite, the mixing time can be

arbitrarily bad.

73



Example 4.4. Consider the following positive definite matrix:

L:[ a “*]' (4.32)
a—€ a
The probability of the first singleton set is:

PL{1}) = . (4.33)

1+4+2a+a?—(a—e)?’
which is identical to the probability of {2}. Yet, if the Markov chain starts at {1} and
proceeds as described by Equations (4.30) and (4.31), considering a single addition or
deletion on each step, it can take arbitrarily long to reach {2}. To see this, notice that to
get from {1} to {2} requires passing through either the state {1,2} or the state {}.

o Through {1,2}: The set {1,2} can have arbitrarily small probability relative to
{1}, for small € and large a: w — 0 asa — oo.

o Through {}: The empty set is defined to have determinant value 1, which can be

arbitrarily small compared to a: + — 0 as a — oo,

A simple fix to bound the mixing time for the above example would be to require
L’s condition number to be sufficiently small: bounding % < b for some constant
b. If the resulting mixing time were found to be short, then this would motivate
using the MCMC scheme for sampling within this sub-class of L matrices. There
remains the caveat though that, given the initial eigendecomposition, Algorithm 2
can always draw each successive sample in O(Nk?) time, where £ is the size of the
sampled set Y. This will almost certainly be faster than waiting for the Markov chain
to mix. So, if many samples are desired, this MCMC scheme will likely not be the

most efficient technique.

EXTENSION TO k-DPPs

Kang (2013) further proposes a k-DPP variant of the MCMC algorithm. This vari-
ant starts from a random size-k set Y, then samples an item ¢ uniformly at random
from Y and an item j uniformly at random from Y\ Y. The element j then replaces

i in' Y with probability:

. det(L o)
min {1, det(Ly) } . (4.34)

74



Naively this determinant ratio would take O(%?) time to compute, but the Schur
determinant identity offers a means of computing it in O(k?) time. Thus, the overall
sampling algorithm is O(k*7y 1. (€)), where Ty x (€) is the mixing time. As for the other
MCMC algorithm, no proof of a fast mixing time is known, since the mixing time
derivation given in Kang (2013) is incorrect. This algorithm does allow for larger
steps though, performing both an addition and a deletion in a single step, which gets
around the issue illustrated by Example 4.4. However, with a slightly more complex
example, we can again show that, absent additional assumptions beyond L being

positive definite, the mixing time can be arbitrarily bad.

Example 4.5. Consider the case where N is even and L is defined as follows:

1 ifi=j,
Lij=<S1—¢ ifi#jandi,j>N/2, (4.35)

0 otherwise .

Intuitively, we can think of this matrix as consisting of two types of items. The first, which
we will call set A, consists of N /2 — 1 distinct items that have no similarity to other items
(zero off-diagonal). The second, which we will call set B, consists of N/2 + 1 nearly
identical items (off-diagonal close to 1) that have no similarity to the items in A. Let the
target set size be k. = N /2. Then we can provide a large lower bound on mixing time due
to the fact that any set that does not include A has essentially zero probability: such a set
would have to include two items from B, whose similarity would make the determinant
value near-zero. Thus, whenever the algorithm randomly selects one of the elements from
A for removal, this move will essentially always be rejected, which results in far too high
of a rejection rate.

More formally, let T represent the Markov chains transition matrix. Let the two
largest eigenvalues of T be denoted by o, and an, with oy being the largest. By definition,
T is stochastic: Y iy, Tyyr = 1 for all Y. Thus, its largest eigenvalue is o = 1. Its
second-largest eigenvalue, as, can be used to lower-bound the mixing time. Levin, Peres,

and Wilmer (2008, Theorem 12.4) show that:

v (€) > log (%) (1 fi}@) . (4.36)

This means that T (€) — 0o as as — 1. We can show that oy is arbitrarily close to 1.

75



First, note that in the limite — 0, we have rank(T) — L., which follows from the fact
that any set including more than one item from B approaches determinant 0. Similarly,
at e = 0 we have a simple formula for trace(T): 222 (5 + 1). This follows from the fact

that T's diagonal entries are:

(4.37)

K22 Y = AU B, for some i ,
Tyy =
0 otherwise .

The first value is implied by the fact that anytime an item from A is selected for removal
N/2-1
N2

(the zero) is implied by the fact that any size-k set not consisting of A and one item from

(happens with probability

), the removal move will be rejected. The second value

B has determinant 0. Thus, the second eigenvalue can be lower bounded as follows:

trace(T) — ay

@2 = rank(T) — 1 (4.38)
N—2(N N -
_ [_N (54-1)—1} {5_1} (4.39)
N +2 2 2 2
=— _N—2:1+N_m‘ (4.40)

The inequality follows from the fact that the trace is a sum of the eigenvalues and the rank
is a count of the nonzero eigenvalues. The second line substitutes oy = 1, and the third

line simplifies. This expression implies that ay — 1 as N — oc.

Despite the negative result of the above example, the same simple fix proposed
earlier for the non-cardinality constrained MCMC algorithm might also suffice to
prove an interesting bound in the constrained setting. More concretely, requiring L
to have a low condition number might suffice. Thus, there remains the possibility
that MCMC algorithms could prove to be faster than the standard DPP sampling

methods for some sub-class of kernel matrices.

4.6.2  NYSTROM APPROXIMATION

The work most closely related to the random projections approach covered in this
chapter is that of Affandi et al. (2013b). Their work also addresses the problem of
approximating DPPs in the setting where N and D are large. In contrast to the

random projections approach though, their method is applicable even when D is

76



infinite. Considering the fact that a Gaussian kernel falls into this infinite-D class,

with features of the form:

1
L(z, ') = exp (—@Hw — a:’Hg) (4.41)

(2l + 2'13)) g~ 1L (')’
e ((EELER)SL(5F) . A

=0

it is of practical importance to be able to handle this setting.

The approach Affandi et al. (2013b) explore is applying a Nystrom approxima-
tion to project a DPP kernel to a low-dimensional space. A Nystrom approximation
involves selecting a small number ¢ of “landmark” points, W C Y, and expressing L

as the Gram matrix of the resulting ¢ x N matrix:
B = (Li)"*Ly. (4.43)

where Ly, is the pseudoinverse of Lyy. This corresponds to approximating L with L:

L:( Lw LWW) _ z(W):< Lw Lww ) (4.44)

Lyw Ly Lyw LwwLiyLww

Notice that this approximation, with its pseudoinverse, may not be acceptable in
the structured DPP setting. It is likely to break the product-of-qualities and sum-of-
similarities decomposition requirements, Equation (3.6), needed for efficient struc-
tured DPP inference. We will show at the end of this section though how a Nystrom
approximation to the dual kernel C, can be effective in the structured setting.
Previous to the work of Affandi et al. (2013b), theoretical results bounding the
Frobenius or spectral norm of the kernel error matrix, £ = L — L, were known. For
example, for the setting where landmarks are sampled with probability proportional
to the squared diagonal entries of L, Drineas and Mahoney (2005) showed that

choosing at least O(k/e*) landmarks guarantees:
i N
1L = Llls < |11 = Lillg + €y L, (4.45)
=1

in expectation, where L; is the best rank-k approximation to L and § = 2 or § =

F. More recent results such as those of Deshpande, Rademacher, Vempala, and

77



Wang (20006) give additional bounds for the setting where landmarks are sampled
adaptively, such that the choice of a landmark decreases the probability of choosing
similar landmarks.

The main contribution of Affandi et al. (2013b) was to provide an upper bound
on a distributional measure of kernel similarity, the L, variational distance from
Equation (4.13). A simple example helps put into perspective the difference between
bounds on matrix norms and bounds on variational distances (Affandi et al., 2013b,
Example 1). Specifically, it is possible for the kernel error matrix to have a small

norm, but still be far from the correct DPP distribution.

Example 4.6. Let L be an N x N diagonal matrix with value o in all entries except
the last, to which we assign value e: Lyy = €. Let L be identical to L, except in the last
entry: Lyy = 0. Then |L — L||r = |L — L||a = ¢, but for any size-k set A that includes
index N, the difference in determinants is: det(L4) — det(La) = ea®~ 1,

A slightly more involved example suffices to show that even for cases where ||L —
L||r and ||L — L|| tend to zero as N — oo, it is possible to have variational distance
|P — P||; approach a limit > 0 (Affandi et al., 2013b, Example 2).

Despite these negative results, Affandi et al. (2013b) are able to provide bounds
on the L; variational distance for both DPPs and %£-DPPs. Their proofs rely on
applying Weyl’s inequality for the eigenvalues of PSD matrices to the error matrix
E = L — L. The final bounds depend only on the eigenvalues of L, the eigenvalues
of the set A under consideration, and the spectral norm of the error matrix. More
precisely, for a set A under the k-DPP P*:

|Pk<A>—75k(A)|§Pk(A)max{[ exl(L) A)—1],[1—w”, (4.46)

er( A, o AN | LY
where rank(L) = m, rank(L) =r, (4.47)
Ai = max{\iy(m_r); i — ||L — L||2}, and (4.48)
A = max{\! — ||L — L|»,0}. (4.49)

The \; here are the eigenvalues of L and the A\ are the eigenvalues of L,. These
bounds are tight for the diagonal matrix examples mentioned above.
Affandi et al. (2013b) test the Nystrom approximation method on a motion cap-

ture summarization task. The inputs are recordings of human subjects performing

78



motions characteristic of a particular activity (e.g. dancing, playing basketball). The
goal is to select a small number of video frames to summarize each activity. Each
video has an average of N ~ 24,000 frames, so constructing an N x N kernel would
be intractable. Constructing the D x D dual kernel C' would be feasible, as the fea-
ture vector for a video frame simply consists of D = 62 values listing the locations
of the motion capture sensors. With this C, it would be tractable to directly apply
the sampling algorithms from Section 2.4. However, Affandi et al. (2013b) argue
that a Gaussian kernel is a more natural fit for problems where items have inherent
geometric relationships, such as this one. Thus, they define as the target kernel L a
matrix where frames with feature vectors « and @’ are related as in Equation (4.42).
This kernel is then approximated by sampling landmarks with probability propor-

tional to the diagonal of the error matrix, EZ, for £ = L — L.Ina study where each

human judge was shown 10 frames sampled independently at random and 10 frames
sampled from a k-DPP with kernel L, the latter was voted the better overall activity
summary 67.3% of the time.

Affandi et al. (2013b) also investigate using random Fourier features (RFFs) as
an alternative to the Nystrom approximation. For several datasets from the UCI
repository (uci), empirical tests demonstrate that the Nystr6m approximation is the
better approach. In their work on continuous DPPs though, Affandi et al. (2013a)

found that RFFs can have an advantage when the eigenspectrum decays slowly.

SELECTING LANDMARK FEATURES

Suppose that instead of trying to reduce the rank of the L matrix by selecting ¢
landmark items, we instead reduced it by selecting d landmark features. That is,
we could replace the dual kernel C' = BB by its Nystrom approximation, call it
C, instead of replacing L by L. This C' though is not sufficient information for
running the standard dual DPP inference algorithms, such as Algorithm 3. These
algorithms require that C be related to a primal kernel, call it L, viaa known d x N
matrix B, as described in Proposition 2.16: L = B'B,C = BB". Finding such a B
seems difficult; we cannot hope to obtain B by a Cholesky decomposition of C, as
this only yields D x D matrices. However, consider taking the eigendecomposition
C = VAVT, where V € RP*4 and A € R4, and using it in combination with the

original B to construct the following matrix: B = VTB. This matrix is d x N, as

79



desired. Moreover, as Lemma 4.7 shows, the corresponding I, = BT B matrix has
the desirable property that its error matrix is PSD. This property is in fact all that is
needed to extend the proofs from Affandi et al. (2013b) from L to L.

Lemma 4.7. Let B € RP*N be a rank-D matrix, and define C = BB and L =
BT B. Let C be the Nystrom approximation of C constructed from d landmark features
constituting the set W. Let V€ RP*4 A € R yepresent its eigendecomposition. Then
for B=V"B and L. = BT B, the following error matrix:

E=L-1L (4.50)
is positive semi-definite with rank rank(E) = rank(L) — rank(L).
Proof. Expanding according to the definition of L and L:
E=L-L=B"B-B'VV'B=B"(I-VV")B. (4.51)
Let Z = I — VV. This matrix is idempotent:
Z2=T-22VVT 4 VVIVVT =T —2VV 4+ VIV =T -VV' =Z. (4.52)

This, combined with it symmetry, implies that it is a projection matrix. These prop-

erties also imply that Z is PSD:
' Zx=x'Z’xr=x'7"Zx=|Zx|2>0. (4.53)

Thus, there must exist a decomposition Z = T''T for some matrix 7 € RP*P. This

means we can I‘C—CXpl‘CSS E as:
E=B"ZB=B'"T'TB=Q'Q, (4.54)

for @ = TB. Thus, E is also PSD. Turning now to the question of rank, first note
that the rank of £ reduces to the rank of Q, which is min(rank(7), rank(B)). The
statement of the lemma assumes rank(B) = D. The rank of T is identical to the rank
of Z = T'T. Recalling that Z is a projection matrix, we have: rank(Z) + rank(I —
Z) = D (Yanai, Takeuchi, and Takane, 2011, Equation 2.11). Since I — Z = vV,
this matrix has rank equal to that of V. Accordingly, Z (and hence T) has rank
D — rank(V). Thus, we have rank(F) = D — rank(V). The matrices L = B' B and
L = B"VVT B have ranks equal to rank(B) and rank(V'), respectively, completing
the proof. O]

80



The properties established in Lemma 4.7 for £ are sufficient to translate the re-
sults from Affandi et al. (2013b) for L to L. For example, the k-DPP result from
Equation (4.46) holds for L replaced by L. This by itself is not necessarily a good
bound though. To see why, first note that the properties of the error matrix estab-
lished in Lemma 4.7 hold for 2ny low-dimensional projection of B (not just B), and
certainly some such projections will not preserve L well. The missing piece of the
puzzle here is that bounds such as Equation (4.45), capping the value of ||L — L||;
at ||L — Lg||2 plus a small error term, where L;, is the best rank-% approximation,
do not necessarily hold for L. We suspect that such bounds can be proven for the
particular projection B = VT B, but leave the proof of such bounds on ||L — L||, to
future work.

Algorithm 4 summarizes the procedure for sampling from L via L. The A* no-
tation indicates the matrix pseudoinverse (inversion of all non-zero eigenvalues).
Line 4’s construction of C’s eigendecomposition from Cyy’s eigendecomposition is a
standard feature of the Nystrom approximation (Li, Kwok, and Lu, 2010, Algorithm
2).

The runtime of Algorithm 4 is linear in D. The eigendecomposition of Cy takes
O(d?) time, and the subsequent construction of V' takes O(Dd?) time. The multi-
plication to create B takes O(NDd) time, and to create C' takes O(Nd?) time. Its
eigendecomposition is an O(d?) operation. The DualDPPSample step takes O(Nd?k)
time, for a size-k sample set Y. Thus, overall the Nystrom-based dual DPP sampling
procedure takes O(Dd? + NDd + Nd*k) time.

Algorithm 4: Nystrdm-based Dual DPP Sampling

Input: B and chosen landmark feature indices W = {iy, ..., i4}
Cyw < principal submatrix of C, indexed by W

V, A + eigendecomposition of Cyy,

Ve /B wVAr

B+ V'B

C <« BBT

V, A « eigendecomposition of C

Y + DualDPPSample(B, V', A) (Algorithm 3)

Output: YV

81



EXTENSION TO STRUCTURED DPPs

The previous section provides a translation of Affandi et al. (2013b)’s proofs from se-
lection of landmark items to selection of landmark features. We can build off of this
to address the structured DPP setting. First, note that selection of landmark items
is not an option in this setting. Structured DPPs rely on product-of-qualities and
sum-of-similarities decomposition rules, summarized in Equation (3.6), for efficient
inference. Unfortunately, even if L satisfies these rules, the Nystr6m approximation
L based on selecting landmark items W can violate them. The simple example given

below illustrates this point.

Example 4.8. Consider length-2 structures where the features for a single structure y

decompose as:
By = q(y)o(y) = ¢(y1)a(y2) (6(y1) + o(y2)) - (4.55)

The matrix L then has entries:

Lyy = q(¥1)a(y2)a(y)a(ys) (0(y,) + o(y,) T (6(yh) + ¢(yh)) . (4.56)

Further suppose that there are just two possible structures (say, two possible instantiations
fory, and one fory,). Let the landmark set W consist of a single item, call ity. Let the
other item be represented by y'. Then the Nystrom approximation for L has entries:

zy,y = Ly,yv zy,y/ = Ly,y’v zy’,y = Lyﬂyv (4-57)
- L. .)?
Fy = Lyl Lyy = 22 (4.58)
R
= q(¥1)*a(¥5) 9 [(d(y1) + d(w,) " (D(y)) + ¢(yh))]* . (4.59)

where g(y) is a function that is constant with respect to y'. While this final entry L,y
may decompose as a product over part qualities and a sum over part similarity features for
some definition of part qualities and part similarity features, it clearly does not decompose

according to the same definitions used for the other entries in the L matrix.

Since selecting landmark items can violate the decompositions necessary for ef-
ficient structured inference, suppose that we instead consider the selection of land-
mark features, as in the previous section. For structured DPPs, N is of exponential

size, so in practice the D x N matrix B is never explicitly constructed. Instead, an

82



D x M*R matrix, consisting of features for all of the possible components, is used:
for a structured DPP with R parts, each of which takes a value from a finite set of M
possibilities, if we assume the degree of any factor in its factor graph is bounded by
¢, then there are at most M°R components. Let H denote this matrix, and consider
substituting H for B in Line 5 of Algorithm 4. The multiplication by V' there is
a linear transformation of the original D features, just as the random projections
of Theorem 4.3 are linear. Thus, transforming H is equivalent to transforming B
itself; the algorithm remains unchanged. The subsequent computation of C' and
the DualDPPSample can be done efficiently using standard structured DPP inference
algorithms, such as those summarized in Section 3.2.

The runtime of Algorithm 4 remains linear in D with these structured modifi-
cations. The computation of Cy requires O(M°Rd?) time in the structured case,
but the time required for its eigendecomposition (O(d?)) and the construction of V
(O(Dd?)) remain unchanged. The construction of H requires time O(M¢RDd), and
creating C' takes O(M¢Rd?) time. The DualDPPSample runtime becomes O(d?k? +
M°Rdk?) for a size-k sample set Y (Kulesza, 2012, Algorithm 11). Thus, given
that D > d > k, the overall structured Nystrom-based sampling algorithm requires
O(M°RDd + d®k*) time.

83



MAP estimation

Maximum a posteriori (MAP) estimation is the problem of finding the highest-
probability set under a DPP:
Y = argmaxdet(Ly-). (5.1)
Yy'Qy
We have seen in the preceding chapters that it is possible to efhiciently perform many
DPP inference tasks, such as normalization and sampling. In contrast, as mentioned
in Section 2.2.5, the DPP MAP task is NP-hard, and has been shown to have no
PTAS (Ko et al., 1995; Civril and Magdon-Ismail, 2009). This is especially unfor-
tunate, as the MAP solution is exactly the set that would best satisfy many standard
subset selection problems, such as those described in Section 1.1. That is, assuming
we have a DPP kernel L that is a good match to a given subset selection task (in that
its minors accurately represent the goodness of the sets), finding the largest minor
would yield the best set. Regrettably, the hardness of this problem dictates that we
must be satisfied with approximate solutions.
Most work applying DPPs to subset selection tasks has thus far approximated
the MAP by sampling. In its simplest form this amounts to drawing a single sam-

ple, or repeatedly sampling and returning the highest-scoring sample. In the case

84



where the DPP kernel L may not be a perfect match to the task at hand, Kulesza
(2012, Page 79) proposed minimum Bayes risk decoding. This is a more sophis-
ticated sampling-based MAP approximation technique: we sample repeatedly, but
rather than returning the sample Y with maximum minor det(Ly ), we hedge bets by
returning the sample that is most similar to the other samples. More precisely, given
a pool of R samples and some (potentially task-specific) measure of set similarity g,

this method computes:

R

YMBR —  arg max }% Zg(YT, Y. (5.2)
y''e{l,....R} * r=1

In this chapter though, we will move away from sampling-based MAP approxima-

tions, and we will also assume that the DPP kernel L is indeed a good match for

the task at hand; Chapter 6 considers several ways to construct L such that this is

approximately true.

The approach we take to MAP estimation is to exploit submodularity. There is a
large body of work on approximately maximizing submodular functions, and we can
leverage this because the function f(Y) = logdet(Ly) is submodular. We will dis-
cuss related submodular maximization work in more detail later in the chapter, but
give a brief overview here. A greedy algorithm of Nemhauser et al. (1978) offers an
approximation guarantee of 1 — 1 for monotone submodular functions, but does not
apply for general DPDs, as they are non-monotone. A more recent greedy algorithm
by Buchbinder, Feldman, Naor, and Schwartz (2012) does give an approximation
guarantee for the non-monotone setting, but unfortunately, it does not perform well
in practice for the logdet objective, even compared to the Nemhauser et al. (1978)
algorithm; see experiments in Section 5.6. Thus, instead of developing combinato-
rial greedy algorithms, we focus on continuous techniques for submodular function
maximization. In other words, techniques that represent a set Y by its character-
istic vector € {0,1}", with z; = 1(: € Y). These techniques relax = such that
its entries can be anywhere in the 0 to 1 range, z; € [0, 1], and replace f(Y) with a
related function F(z). They optimize this function to get &, and then round & to
get a corresponding set Y. We present a novel continuous relaxation F, which, in
contrast to the standard relaxation F' used for general submodular functions, can be

evaluated and differentiated exactly and efficiently for log det.

85



Ultimately, we obtain a practical MAP algorithm with a ;-approximation guar-
antee. 'The continuous nature of the algorithm allows it to extend neatly to MAP
inference under complex polytope constraints, although we do not have approxi-
mation guarantees for this setting. Nevertheless, this extension opens the door to
combining DPPs with other models such as Markov random fields and weighted
matchings. In Section 5.6, we demonstrate that our approach outperforms sev-
eral standard submodular maximization methods on both synthetic and real-world
data. The majority of the information that this chapter conveys can also be found
in Gillenwater, Kulesza, and Taskar (2012b).

5.1 DEFINITION OF SUBMODULARITY

As always, let Y denote a ground set consisting of N items: Y = {1,...,N}. A set
function f : 2¥ — R maps each subset of this ground set ) to a real number. A set

function qualifies as submodular if it obeys the law of diminishing returns.

Definition 5.1. Submodularity by diminishing returns: 7he function f : 2¥ — R
is submodular if and only if YA, B C Y such that A C B and i € Y \ B, it is the case

that f(BU{i}) — f(B) < F(AU{i}) — f(A).

In words: a new element contributes more value when added to set A than when
added to any superset of A. Diminishing returns is equivalent to several other simple

conditions.

Definition 5.2. Submodularity by set combination: 7he function f : 2¥ — R is
submodular if and only if YA, B C Y it is the case that f(AN B) + f(AU B) <

f(A) + f(B).
Definition 5.3. Submodularity by second-order differences: 7he function f :

2Y — R is submodular if and only if YA C Y and i,j € Y\ A, it is the case that
f(AU{i,j}) — f(AU{j}) < f(AU{i}) — f(A).

Note that while Definition 5.3 seems weaker than Definition 5.1, as it corre-
sponds to restricting to B = A U {j}, it is nonetheless equivalent (Bach, 2013,
Propositions 2.2 and 2.3).

86



......

vol(Baugi}) _ bihy > ho — bzha _ Yol(Bau(iyy)

vol(Ba) b1 1 2 b vol(Baug,})

Figure 5.1: Illustration of Theorem 5.4’s argument for |A| = 1. Left: Adding el-
ement ¢ to A changes B’s volume by the height h;. Right: Adding element i to
AU{j} changes AU {j}’s volume by a lesser factor, h,. The inequality follows from
the fact that “height” is defined as the shortest distance from B; to the subspace it is
joining. The space associated with AU{;j} includes and extends the space associated
with A, implying that the shortest distance from B; to the former can only be smaller
than the shortest distance from B; to the latter.

5.2 LOG-SUBMODULARITY OF det

As previously mentioned, the function f(Y) = logdet(Ly) is submodular. In other
words, det is a log-submodular function. Given that entropy is submodular, one
simple proof that logdet is submodular is that, as seen in Equation (2.52), the en-
tropy of a Gaussian is proportional to logdet. We can also more directly prove the
log-submodularity of det by making a geometric argument. Theorem 5.4 does ex-
actly this. Figure 5.1 illustrates the theorem’s argument for the simple case of a size-1

base set.

Theorem 5.4. For a D x N matrix B with columns indexed by the elements of Y, the
Sfunction [ : 2¥ — R defined by:

f(Y) = logdet(By By) (5.3)
is submodular.

87



Proof. By the second-order differences definition of submodularity, Definition 5.3,
f is submodular if, for all sets A C Y and all i, ¢ A:

fAU{i}) = f(A) = F(AU{i,j}) — fF(AU{G}). (5.4)

Recall from Theorem 1.2 that the parallelotope defined by By’s columns has vol-
ume vol(By) = y/det(By By). Thus, we can write f(Y) = 2logvol(By). Then the

submodularity condition is equivalent to:

vol(Baugiy) - vol(Baugi, )

VOI(BA) - VOl(BAU{j}) ) (55)

To establish the correctness of this inequality, start by writing B; = Bj“ + B}, where
B]” is in the span of {B}ca U B; and Bj is orthogonal to this subspace. Such
a decomposition can be found by running the Gram-Schmidt process. As in the
proof of Theorem 1.2, the parallel component can be shown to have no effect on
the volume, such that the numerator on the righthand side of Equation (5.5) can be
written:

vol(Baugijy) = vol(Baugy)vol(B;) . (5.6)

Similarly, we can rewrite the denominator of Equation (5.5)’s righthand side by

applying the standard “base x height” formula:

vol(Bu;y) = vol(B)vol (proleA(Bj)) . (5.7)
Now, notice that the fraction:
vol (B3) (5.8)
vol (projLBA(Bj)>

is < 1, since B;- is the component of B; orthogonal to a subspace that includes B..

Putting together Equations (5.6) and (5.7) along with this observation, we have:
VOI(BAU{Z‘,]'}) VOI(BAU{i})VOl(BjL) VOl(BAU{i})

= < . 5.9
vol(Baui))  vol(Ba)vol (projLBA(Bj)> ~  vol(By) (5.9)

[]

Having given some intuition about the log-submodularity of det, we now review

relevant literature on submodular maximization.

88



5.3 SUBMODULAR MAXIMIZATION

While submodular minimization is a convex optimization problem, submodular
maximization is NP-hard. In fact, submodular maximization generalizes the NP-
hard max-cut problem—the problem of dividing the nodes in a graph into two sets
such that the number of edges between the sets is maximized. For max-cut there
exists a 0.878-approximation algorithm (Goemans and Williamson, 1995), but this
algorithm does not easily extend to all submodular functions. The max-cut prob-
lem is significantly harder than many other submodular problems though. In fact,
max-cut and many of the hardest submodular problems can be characterized as non-

monotone.

Definition 5.5. Monotonicity: 7he submodular function f : 2¥ — R is monotone if
and only if VA, B C Y, such that A C B, it is the case that f(A) < f(B).

In words: adding elements can never decrease the value of a monotone sub-
modular function. This monotonicity property can be used to divide the class of

submodular functions, and also the associated maximization algorithms.

5.3.1 MONOTONE f

Algorithm 5: GREEDY

Input: submodular f, ground set Y, limit &
Y+ 0,U+Y
while Y| < k& do

i* < argmax,_,; f(Y U{i})

if f(Y U{i*}) < f(Y) then

break

Y« YuU{i*}

U<+ U\ {i*}
return Y

Even restricting to monotone f, the maximization problem is not always easy.

In fact, the addition of a simple cardinality constraint such as |Y] < k makes the

89



problem NP-hard. One common approximation algorithm for addressing this set-
ting is that of Nemhauser et al. (1978), shown here as Algorithm 5, GreeDY. This
algorithm starts from the empty set and greedily adds the item that produces the
maximum marginal gain each iteration, until the # limit is reached. Note that for
monotone [ the if-condition that results in early stopping will never evaluate to
“true”. The condition is included here only because in later experiments we apply
this algorithm to non-monotone f.

As with all of the algorithms that we will consider, this one only has an ap-
proximation guarantee when f, in addition to being submodular, is non-negative:
f(Y) > 0 VY. Without this property, an exponential number of calls to an f-oracle
is needed to even decide whether the maximum value is positive or zero (Chekuri,
Vondrik, and Zenklusen, 2011, Footnote 4). For the submodular function of inter-
est in the case of DPPs, f(Y) = logdet(Ly ), the requirement that the DPP kernel L
be PSD only implies that det(Ly) is non-negative; the log of this expression will be
negative whenever det(Ly) < 1. We can attempt to circumvent this issue by adding

a sufficiently large constant ;) such that:
fY)=f(Y)+n=logdet(Ly)+n>0. (5.10)
However, this can damage approximation guarantees. To see how, define 7 to be:
n=— min logdet(Ly), (5.11)

the smallest amount that we can add to f such that it is non-negative. Ifan algorithm
with an a-approximation guarantee is run, then, with respect to the true best set Y*,

the set Y that it returns has value:

f(Y) =logdet(L;) +n > a(logdet(Ly-) + 1) = af(Y*), (5.12)
which implies: logdet(Ly) > alogdet(Ly+) — (1 — a)n. (5.13)

The larger the offset 7, the less meaningful this statement is. Thus, adding a constant
n is not an ideal solution to the problem of negative f values. We could instead make
the objective non-negative by replacing L with L + I (essentially marginals of the
corresponding DPP), but this is usually a worse solution. These marginals, det(Ky ),

can be misleading: when there are sets of many sizes, small sets with inferior scores

90



can overwhelm less-numerous sets that have larger scores, thus leading the algorithm
down the wrong path.

Ultimately, in practice, submodular maximization algorithms such as GREEDY
can still do relatively well with typical DPP kernels L, even though these can have
logdet(Ly) significantly < 0. The continuous approximation algorithm we develop
later in this chapter also requires f non-negative for its i-approximation guaran-
tee, but similarly performs well in practice with f that violate the non-negativity
constraint.

One additional property—normalization—is necessary before we can state the
approximation guarantee for the GREEDY algorithm. The set function f: 2¥ — R is
normalized if and only if f(#) = 0. Notice that the submodular function of interest
in the case of DPPs satisfies this definition:

f(0) = logdet(Ly) = log(1) =0. (5.14)

Nembhauser et al. (1978)’s algorithm provides a (1 — 1)-approximation guarantee
for normalized, non-negative, monotone submodular functions. There is no guaran-
tee, however, when using this algorithm with a non-monotone function. Our func-
tion of interest, log det, unfortunately falls into the non-monotone class; adding an
element i to the set Y may decrease the det value. Recalling that det is a measure of
a set’s quality and diversity, it is intuitively clear that a decrease can occur for sev-
eral reasons: if the new item’s magnitude is small, or if it is too similar to any other

included item.

5.3.2 INON-MONOTONE f

For non-monotone submodular functions, the maximization problem is harder to
solve. In fact, Feige, Mirrokni, and Vondrdk (2007) prove that for this setting attain-
ing better than a 1-approximation is hard in the value oracle sense. That is, according
to Theorem 4.5 of their work, it would require an exponential number of f-value

. 2
queries, e¢ ¥/16, for any € > 0.

Proof sketch: Feige et al. (2007) construct an f such that for most sets its value

is that of the cut function of a complete graph with edge weights of 1 (max value:

91



1N?). But for a few sets f has the value of a cut function on a complete bipartite
graph with edge weights of 2 (max value: 1 N?). They show that any algorithm would
have to query f an exponential number of times to be assured of finding the bipartite

portion of f.

More recently, Dobzinski and Vondrdk (2012) translated this result from the
value oracle context to complexity theory. Theorem 3.1 of their work states that

better than a -approximation implies NP = RP.

Proof sketch: Using the same f as Feige et al. (2007), Dobzinski and Vondrik
(2012) show how to represent f compactly and explicitly such that distinguishing
between the two types of graphs implies deciding Unique-SAT. Unique-SAT is the
problem of deciding whether a Boolean formula has exactly one satisfying assign-
ment. There is a randomized polynomial-time (RP) reduction from SAT to Unique-
SAT (Valiant and Vazirani, 1986, Theorem 1.1), so Unique-SAT cannot be solved
in polynomial time unless NP = RP.

In light of this, the best that can be hoped for, without additional assumptions
on f, is a 3-approximation. Buchbinder et al. (2012) present a surprisingly simple
algorithm that achieves exactly this. The algorithm is shown as Algorithm 6 here,
and we will refer to it as RANDOMIZED-SYMMETRIC-GREEDY. This algorithm is “sym-
metric” in that it starts from both f(0) and f(Y), then simultaneously greedily builds
up a set X while paring down a set Y until they meet somewhere in the middle. This
is somewhat like optimizing both f and its complement, f(V) = f(¥\ Y). (Note
that the complement of any submodular function is itself submodular.) A determin-
istic version, Algorithm 7, SYMMETRIC-GREEDY, yields a $-approximation. The two
algorithms are very similar, with the main difference being that for Algorithm 6 the
decision of whether or not to include an item is softened.

In addition to its tight approximation guarantee, RANDOMIZED-SYMMETRIC-
GREEDY is also advantageous compared to many other non-monotone submodular
maximization algorithms because of its simplicity, which makes it trivial to code,
and its relatively low time complexity. It makes O(N) calls to the f-oracle, and the

constant hidden by the big-O notation here is at most 4, even for a naive imple-

92



Algorithm 6: Algorithm 7:

RANDOMIZED-SYMMETRIC-GREEDY SYMMETRIC-GREEDY

1: Input: submodular f, ground set Y 1: Input: submodular f, ground set Y
20 Xog+ 0,5+ Y 2 Xog+— 0,5+ Y

3: fori=1to N do 3: fori=1to N do

b a4 f(Xi UL = F(Xin) b a4 f(XiaULi)) = F(Xia)

50 b f(Yiea \ {i}) — f(Yi1) 50 b+ f(Yie \ {i}) — f(Yiz)

6:  if a; > b; then 6:  a; < max{a;,0},b; + max{b;, 0}
7: X; 4 X U{i},Y; < Vi, 7. with probability - do:

8: else 8 X+ X, Ui}, Y+ Y,y

9: X+ X, 1, Y, < Y\ {i} 9: else do:
10: return X, 10: X+ X, Y, < Y\ {¢}

11: return X,

Figure 5.2: Non-monotone submodular maximization algorithms from Buchbinder
et al. (2012).

mentation. However, as we show in Section 6.7, in practice this algorithm does not

perform very competitively on the logdet problem.

5.3.3 CONSTRAINED f

Buchbinder et al. (2012)’s algorithms provide a tight approximation guarantee for
the unconstrained submodular maximization setting, where any Y C Y is an ac-
ceptable solution. Settings where additional constraints are placed on Y are also of
interest though. In our discussion of monotone submodular functions we already
mentioned the cardinality constraint |Y| < k, and Buchbinder et al. (2012)’s non-
monotone algorithms have been extended to handle this type of constraint (Buch-
binder, Feldman, Naor, and Schwartz, 2014). This adaptation relies on continuous
optimization techniques, as do several other algorithms that handle more complex
constraints.

As described at the beginning of this chapter, continuous techniques are those
that represent a set Y by its characteristic vector € {0,1}", with z; = 1(i € Y),
and then relax @ such that its entries can be anywhere in the 0 to 1 range: z; € [0, 1].
While some combinatorial approaches have been developed to handle knapsack and

matroid constraints (Gupta, Roth, Schoenebeck, and Talwar, 2010; Gharan and

93



Vondrédk, 2011), the most flexible constraint-compatible algorithms rely on contin-
uous techniques. The work of Chekuri et al. (2011) falls into this category, and the
algorithm we derive in this chapter builds on that work. Chekuri et al. (2011) de-
scribe methods for handling not only knapsack constraints and matroid constraints,

but also more general polytope constraints.

5.4 POLYTOPE CONSTRAINTS

Before describing our algorithm, we formally define the polytope constraints that
Chekuri et al. (2011) can handle and give a few motivating practical examples of
constrained problems. Most generally, a polytope is a closed shape defined by flat
sides. We can formally define it in a recursive manner. A 0-polytope is a vertex. A 1-
polytope is a line segment bounded by two 0-polytopes. A 2-polytope is a plane with
1-polytope boundaries. An N-polytope is an N-dimensional surface with (N — 1)-
polytope boundaries.

For submodular maximization, the relevant polytopes P are those that are N-
dimensional and occupy some portion of the space [0, 1]". For such polytopes, each
dimension of a point @ € P is then interpretable as the probability z; that i €
Y. 'This defines a clear link between a continuous function F(zx) and its discrete
submodular counterpart f(Y). For efhicient submodular maximization algorithms,

a simple restriction on this class of polytopes is necessary: solvability.

Definition 5.6. Solvable polytope: A polytope P C 0,11V is solvable if for any linear
objective function g(x) = a'x, it is possible to efficiently find the best x in P:

x = argmaxg(x'). (5.15)

x'eP

Vondrik (2008) proposes a “continuous greedy” algorithm that is a (1 — 1)-
approximation for the problem max,cp F'(z), when f is monotone and P is solv-
able. Unfortunately, these guarantees do not extend to non-monotone f. In fact,
an additional restriction on the polytopes is necessary for any guarantees in the non-
monotone case; according to Vondrik (2009), no constant factor approximation is

possible unless the polytope is down-monotone.

94



Definition 5.7. Down-monotone polytope: A polytope P C [0,11V is down-
monotone if for all x,y € [0,1]~, we have that y < x and x € P impliesy € P.
(Inequalities apply element-wise: y < x implies y; < x; for alli.)

Fortunately, the class of solvable, down-monotone polytopes still includes a wide
variety of useful constraint types, including knapsack polytopes and matroid poly-

topes. We now define these polytopes more formally.

Definition 5.8. Knapsack polytope: A constraint of the form 3" | a;x; < b for non-
negative values a;, x;,b is called a knapsack constraint. The convex hull of all the feasible
solutions is called the knapsack polytope: conv (:1: | SN ar; < b).

Definition 5.9. Basis matroid polytope: Leze; € RY denote the standard unit vector
with a 1 in entry i and zeros elsewhere. For a set'Y, let its associated incidence vector be
ey = Y ey €. Represent the bases Z of a matroid by their incidence vectors. Then the
polytope Pz = conv(ey | Z € Z), is called the basis matroid polytope.

In our experiments, we make use of one type of matroid in particular: the match-
ing matroid. This matroid is very useful in practice for making comparisons. For
example, Figure 5.3 illustrates how log det maximization subject to a matching ma-

troid polytope constraint might be effective for an image comparison task.

Definition 5.10. Matching matroid: Given a graph G = (V, E), let T be the family
of all Y C E that can be covered by a matching. (A set of edges is a matching if no two
edges share a vertex.) Then (E,I) is a matroid. The bases of the matroid correspond to

subsets of E that are maximum matchings in G.

5.5 SOFTMAX EXTENSION

Continuous submodular maximization methods (Chekuri et al., 2011; Feldman,

Naor, and Schwartz, 2011) are based on the following submodularity definition.

Definition 5.11. Continuous submodularity: A function G : [0,1]N — R is sub-
modular if, for all x,y € [0,1]":

GleVy)+Gxry) <Gx)+Gy), (5.16)
where (x V y); = max{w;,y;} and (x A y); = min{x;, y;}.

95



'+

IV o%0 g AN

F S

¥ D Faeth %t 00

+9 PR o g

o TR + + P
oL+ & + *\ 4+ O

® PTo T oA oy doot x

A
& oud

Highest quality 1:1 matches

+
+
+ -“"+1‘_+ L +
+ +
*_+ + + T +
"
+ et
fa ++ okt b
+ PR
+ + +
- +
*a * + +* +
+ + +
Point set 1
oo
o0 & 8 0 o
) o )
o ® [
[ ° °B° °
0 00 @ @0 o°°
oo°% °
o o
% ?
o o
) o0 9o e°
%o
[
ooom %o o0
4 o
& )
® % 0%, o oo

Point set 2

Figure 5.3: Consider the task of comparing two images, where we start by running a
key point detector on each image. This is visualized on the left by two point sets. To
match the key points in one image to those in the other, it is desirable to pick point
pairs where the constituent points are as close to each other as possible. The center
image here indicates with green lines some pairs that are fairly close (good quality
matches). To improve the accuracy of our image comparison, we could impose the
1-to-1 matching constraint that says no key point in image 1 can map to more than
one key point in image 2 and vice versa. If just the top-k highest quality pairs obeying
this constraint are selected, the matching looks like that on the top right. If instead
a DPP MAP approximation algorithm is run, then the result is more diverse, with
only slightly longer edges. Whereas the highest-quality method may indicate two
images are very similar even if there are large regions of disparity, the DPP MAP

Ground set of pairs

o p
e
? +©

+0
/Je"‘&r

%

DPP approx-MAP 1:1 matches

method, with its better coverage, is less likely to make this mistake.

96




The standard continuous submodular function that maximization algorithms op-
timize is called the multilinear extension. This extension was first introduced by
Calinescu, Chekuri, P4l, and Vondrdk (2007). For a vector = € [0, 1]", consider
a random subset R(x) that contains element i of J with probability z;. The mul-
tilinear extension is the expected value of f on R(x): F(z) = E[f(R(x))]. More

concretely, the multilinear extension of f is F': [0,1]Y — R with value:

Fa)= Y fO) [[=][[0-2). (5.17)
Yy ey HEY gy

Notice that explicitly computing F' according to this formula would require sum-
ming over 2" sets Y C V. For some f though, such as graph cuts, ' can be computed
efficiently. For all other f, by randomly sampling sets Y according to the probabil-
ities in @, F(x) can be estimated arbitrarily well; Calinescu et al. (2007) state that
for any f, a polynomial number of samples yields a (1 — 1/poly(V))-approximation
to F(z). Nevertheless, the need to sample tends to make algorithms based on the
multilinear extension much slower than greedy, combinatorial algorithms. For the
function of interest in the case of DPPs, f(Y) = logdet(Ly), sampling to estimate
F makes for a much slower algorithm than GREEDY or SYMMETRIC-GREEDY.

With a small change to the multilinear extension though, we arrive at an objec-
tive F' that can be computed exactly and efficiently for logdet. The resulting algo-
rithm runs more quickly than GREEDY or SYMMETRIC-GREEDY for large N. Moreover,
the modified objective retains critical properties of the multilinear extension, which
allow us to build off of proofs in Chekuri et al. (2011), ultimately resulting in a
constant-factor approximation guarantee for optimizing F. For the special case of
f(Y) = logdet(Ly), consider the following modification to the multilinear exten-

sion:

F(z)=log > exp(f(Y)) [] = [] (1 —). (5.18)

Yiycy HEY gy
We refer to this as the softmax extension.

Figure 5.4 provides a visual comparison of the objectives from Equations (5.17)
and (5.18) for a toy example. Consider the case where the ground set consists of just
the two items pictured on the top left in Figure 5.4. At the integer points, circled
in the left image, the two objective functions agree with each other and their value

is exactly the log det of the set specified by «. For example, notice that the value of

97



1

N =2 X1
continuous O/

—

relaxation 0

extension
objectives

Figure 5.4: Top left: Ground set consisting of two vectors. Top right: Domain
of the optimization variables; z; = probability of including vector i. Bottom left:
Softmax (top, red) and multilinear (bottom, blue) objectives plotted on the domain
from the top right. Integer points are circled. Bottom right: Plot rotated 90° clock-
wise. The points = [1,0] and & = [0, 1] are circled.

the objectives at @ = [1,0] is smaller than at = [0, 1] since vector B; has smaller
magnitude than B,.

In addition to the similarities observed in Figure 5.4, the softmax extension and
multilinear extension are related in that they both involve a sum over exponentially
many sets Y. Yet, we can show that the softmax extension is efliciently computable.

Theorem 5.12 contains the details.

Theorem 5.12. For a positive semidefinite matrix L and x € 0,1V, we have:

exp(F(z)) = Y det(Ly) [] = [] (1 — =) (5.19)
Y:YCY €Y gy
= det(diag(x)(L — 1)+ I), (5.20)

where diag(x) indicates a diagonal matrix with entry (i,1) equal to x;.

98



Proof. Assume momentarily that z; < 1, Vi. Then:

exp(F(z)) = H (1—x;) Z det(Ly) H . f; (5.21)
i=1 Y:YCY ey !
= H (1— ;) Z det ([diag(x)diag(1 — x)'L], ) (5.22)
i=1 Y.vcy
= H(l — ;) det(diag(x)diag(1 — @) 'L + I) (5.23)
= det(diag(z)L + diag(1 — x)) (5.24)
= det(diag(x)(L — 1)+ I). (5.25)

The second and fourth equalities follow from the multilinearity of the determinant,
and the third follows from DPP normalization, Theorem 2.1. Since Equation (5.25)

is a polynomial in @, by continuity the formula holds when some z; = 1. ]

Given that the softmax extension can be written as a single N x N determinant,
it can be computed in O(N*) time. The derivative of a determinant can be found by
applying rules from Petersen and Pedersen (2012). This results in an expression for
the derivative of the softmax extension that can also be computed in O(N¥) time.

Corollary 5.13 provides the details.
Corollary 5.13. For F'(z) = logdet(diag(x)(L — I) + I), we have:

OF (x)
6@»

= tr((diag(z)(L — I) + 1) (L — 1);) (5.26)
= [(diag(e)(L — 1)+ 1)~ (L= 1)].. , (5.27)

where (L — I); denotes the matrix obtained by zeroing all except the ith row of L — 1.

5.5.1 SOFTMAX MAXIMIZATION ALGORITHMS

Continuous submodular maximization algorithms for the multilinear extension typ-
ically follow the objective’s gradient to find a local maximum. The algorithm we
give here for optimizing the softmax extension behaves in an analogous manner.
When the optimization polytope P is simple—for instance, the unit cube [0, 1]¥—
methods such as L-BFGS (Nocedal and Wright, 2006, Section 9.1) can be employed

99



Algorithm 8: cCOND-GRAD Algorithm 9: soFTMax-orT

1: Input: function F, polytope P Input: kernel L, polytope P
2: £+ 0 Let F(x) = logdet(diag(x)(L — I) + 1)
3. while not converged do x < LOCAL-OPT(F, P)
4 y< argmaxVF(z)"y y + LocaL-opT(F, Pn{y’ | v < 1—x})
y'eP
50 a4 aigel[gixF(a x+(1—a)y) Output: { x 1fﬁ7’(a:).> F(y)
y otherwise
6: zT+oaxr+(l—a)y
7: Output: x

to rapidly find a local maximum of the softmax extension. Alternatively, in situa-
tions where we are able to efficiently project onto the polytope P, we can apply
projected gradient methods.

In the general case, however, we assume only that the polytope is solvable and
down-monotone, as in Definitions 5.6 and 5.7. In such a setting, we rely on the con-
ditional gradient algorithm, also known as the Frank-Wolfe algorithm (Bertsekas,
1999; Frank and Wolfe, 1956). Algorithm 8, COND-GRAD, describes the procedure.
Intuitively, at each step the gradient gives a linear approximation for the softmax
objective function at the current point . Since we assume the polytope P is solv-
able, we can find the point y € P that maximizes this linear function. We then
move from the current point  to a convex combination of « and y. This ensures
that we move in an increasing direction, while remaining in the polytope P, which
is sufficient to efficiently find a local maximum of the softmax extension over P.

It remains to show that this local maximum, like the multilinear extension’s lo-
cal maxima, comes with approximation guarantees. Technically, to obtain these
guarantees we must run COND-GRAD twice, once on the polytope P and once on a
modification of P that depends on the solution found by the first run: PN {y |
y <1 —x}. This second step is a bit reminiscent of the use of f()) in Algorithm 7,
SYMMETRIC-GREEDY, which can be thought of as optimizing the complement func-
tion f(Y) = f(¥\Y). In practice this second run of COND-GRAD can usually be
omitted with minimal loss (if any). Algorithm 9, sorrmax-opT, outlines the full
softmax optimization procedure, which is the same as the one proposed by Chekuri

et al. (2011) for the multilinear extension, F.

100



5.5.2 SOFTMAX APPROXIMATION BOUND

In this section, we show that SOFTMAX-OPT is a -approximation for the problem
of maximizing F' over the polytope P = [0,1]". We build on proofs from Chekuri
et al. (2011). First, we show that, as is the case for the multilinear extension, the
softmax extension exhibits partial concavity. Lemma 5.14 establishes that the second
derivative of F' is negative in certain cases and Corollary 5.15 states the implied

concavity condition.

Lemma 5.14. For u,v > 0, we have:

2

Proof. We begin by rewriting F' in a symmetric form:

F(z + su+ tv) = logdet(diag(x + su + tv)(L — I) + I) (5.29)
= logdet(diag(x + su + tv))+ (5.30)

logdet(L — I + diag(x + su + tv) ™) (5.31)

= logdet(D) + logdet(M), (5.32)

where D = diag(x + su + tv) and M = L — I + D~'. Note that D, M > 0, since

0 < x + su + tv < 1. Then, applying standard matrix derivative rules, we have:

%F(a: + su + tv) = (D~ 'diag(v) — M D *diag(v)). (5.33)
Taking the second derivative with respect to s:
af;tﬁ(m + su + tv) = tr(— D *diag(v)diag(u) + 2M ' D*diag(v)diag(u)—
M~'D~*diag(u)M ' D~ *diag(v)). (5.34)
Since diagonal matrices commute and tr(AB) = tr(BA), the above is equal to
—tr(SST) <0, where:
S = D 'diag(v/v)diag(v/u) — D~ 'diag(vv)M 'diag(v/u)D . (5.35)

Note that S is well-defined, since u,v > 0. The matrix SST has squared entries on

its diagonal, hence we are guaranteed that its trace is non-negative. ]

101



Given this proof of negative Hessian entries, we immediately have the following
corollary. 'The inequality here applies elementwise: v; > 0 Vi. To better visualize
the meaning of this corollary, Figure 5.5 shows cross-sections of the softmax and
multilinear extensions in an all-positive direction and a non-all-positive direction.

Only in the former do we observe concavity.

Corollary 5.15. F(z -+ tv) is concave along any direction v > 0 (equivalently, v < 0).

Figure 5.5: The softmax (top, red) and multilinear (bottom, blue) objectives. Left:
Example all-positive, concave cross-section of the objectives. Right: Example non-
all-positive, non-concave cross-section of the objectives.

Corollary 5.15 tells us that a local optimum @ of F" has certain global properties—
namely, that F(x) > F(y) whenever y < x ory > . Applying this fact, we can de-
rive a lower-bound on F(z), just as Chekuri et al. (2011) did for F(z). Lemma 5.16
gives the details.

Lemma 5.16. Ifx is a local optimum of I, then for any y € [0,1]":
2F(x) > F(xVy)+ FlxAy), (5.36)
where (x V y); = max(z;,y;) and (x A y); = min(z;, y;).

Proof. By definition, x Vy —x > 0 and z Ay — & < 0. By Corollary 5.15 and the

first order definition of concavity:

VF(@) (xVy—x)> F(xVy)— F(x) (5.37)

VF(@) (e Ay —x)>F(xAy)— F(x). (5.38)

Adding the two equations gives the desired result, given that, at a local optimum w,

we know VF(z)"(z — ) < 0 for any z € P that is all-negative or all-positive. [

102



Continuing to follow along the same proof path as Chekuri et al. (2011), we
now define a surrogate function F*. Let &; C [0,1] be a subset of the unit inter-
val representing z; = |X;|, where |X;| denotes the measure of X;. (Note that this
representation is overcomplete, since there are in general many subsets of [0, 1] with
measure z;.) 'Then F* is defined on X = (X, &,, ..., Xy) by:

F*(X)=F(x), x=(X| X% ..., |&]). (5.39)
Lemma 5.17. F* is submodular.

Proof. We first show that for x < y and a > 0, we have:
Flx+a)— F(x)>F(y+a) - F(y). (5.40)
By the fundamental theorem of calculus:
. - Ly .
F(x+a)— F(x) :/ gF(:v+ta) dt, (5.41)
0
and by a second application:

(F(y+a)— F(y)—(F(z+a) - F(z)) =

/ / oo P (@ + sy — @) +ta) dt ds. (5.42)

Since y — « > 0, Corollary 5.15 allows us to conclude that the second derivatives

are non-positive. Now, for ¥ C Y and ANY = 0 where X, ), A represent z, y, and

a, respectively, we have:

F*(XUA)— F*(X)= F(x +a) — F(x) (5.43)
> Fly+a)— F(y) (5.44)

= F*(YUA) - F*() (5.45)

O

Lemmas 5.16 and 5.17 suffice to prove the following theorem, which appears for
the multilinear extension in Chekuri et al. (2011), and here bounds the approxima-
tion ratio of Algorithm 9, sorrMax-orT. We omit the proof since it is unchanged
from Chekuri et al. (2011).

103



Theorem 5.18. Let F(x) be the sofimax extension of a non-negative submodular func-
tion f(Y) = logdet(Ly), let OPT = maxycp F ('), and let x© and y be local optima
of I in the polytope P and the polytope PN\ {y' | y' < 1 — x}, respectively. Then:

max { F(x), F(y)} > iOPT > ir}glezllg(logdet(Ly) | (5.46)

Note that the softmax extension is an upper bound on the multilinear extension,
and thus Equation (5.40) is at least as tight as the corresponding result in Chekuri
et al. (2011). We state the following corollary to address the possible existence of

negative f values.

Corollary 5.19. Algorithm 9 yields a %-approximation to the DPP MAP problem when-
ever logdet(Ly) > 0 for all Y. In general, the objective value obtained by Algorithm 9
(SOFTMAX-OPT) is bounded below by ;OPT — 3n, where n = — miny logdet(Ly).

In practice, filtering of near-duplicates and especially low-quality items can be
used to keep n from getting too large; however, in our empirical tests 7 did not seem

to have a significant effect on approximation quality.

5.5.3 ROUNDING

To convert a }-approximation with respect to I into an approximation guarantee
for its discrete counterpart f, the continuous variable that is output by sorrmax-
orT, € [0,1]", must be converted into a set Y C Y. When the polytope P is
unconstrained, as in P = [0, 1]V, it is easy to show that the results of Algorithm 9

are integral (or can be rounded without loss). Theorem 5.20 addresses this case.

Theorem 5.20. If P = [0,1)", then for any local optimum x of F, either x is integral

or at least one fractional coordinate x; can be set to 0 or 1 without lowering the objective.

Proof. By multilinearity of the determinant, the expression:
F(z) = logdet(diag(z)(L — I) + 1) (5.47)
is linear in each coordinate z; if all the other coordinates x_; are held fixed. That is:

F(l’i, CU,Z') = log(aixi + bz) 3 (548)

104



where a; and b; are constants. Suppose that coordinate i is fractional (0 < z; < 1)
at a local optimum. Then the gradient with respect to z; must be zero, since the

polytope constraint is not active. This gradient is:

which can only be zero if a; = 0. Hence, setting z; to 0 or 1 does not affect the

objective value. O]

More generally, the polytope P can be a complex geometric object, and in this
case we are not guaranteed that sorTMax-oPT will return an integer solution. Thus,
its output needs to be rounded. For the multilinear extension, in the simple case
where P corresponds to the discrete cardinality constraint |Y| < k, rounding can be
done without loss in expected f-value (Calinescu, Chekuri, P4l, and Vondrik, 2011,
Section 2.4) by using pipage rounding techniques (Ageev and Sviridenko, 2004).

For general polytopes, more complex mechanisms are necessary. To this end,
Chekuri et al. (2011) contribute a class of rounding algorithms that they call “con-
tention resolution schemes” (CR schemes). Ultimately, given a continuous solution
x € P, these schemes start from a random subset R(zx) that contains element ¢ of
Y with probability ;. Then, elements are removed from R(x) until it is feasible
according to the original constraints on S. The key is to design the removal algo-
rithm in such a way that we are guaranteed that element ¢ appears in the final set
with probability at least cz;, for some sufficiently large ¢ > 0. Chekuri et al. (2011)
obtain an optimal CR scheme for the case of a single matroid constraint, and also
provide CR schemes for knapsack constraints and combinations of such constraints.

Unfortunately, none of these rounding results, neither the pipage rounding result
for cardinality constraints nor the CR schemes for more complex constraints, trans-
late directly from the multilinear extension to the softmax. Pipage rounding may
result in loss of expected f-value when applied to the softmax objective, as softmax
does not satisfy the e-concavity condition that is necessary for lossless pipage round-
ing. In fact we can give a trivial example that shows no constant-factor guarantee is

possible for rounding softmax in the cardinality-constrained setting.

Example 5.21. Suppose we have the constraint |Y'| < 1, which translates to the polytope
constraint 3~ x; < 1. Let L be an N x N diagonal matrix with all diagonal entries

105



having value o« > NN. Then the value x such that xv; = <. for all i is in the constraint
polytope, and has softmax value:

F(z) = log Z %det(Ly) (5.50)
Y:YQy
> log Y 1y det(Zy) (5.51)
YiY=y
L N
= log (Woz ) (5.52)
> log(a™™1). (5.53)

In contrast, given the |Y| < 1 constraint, the maximum f-value islog(c). Thus, the best

approximation factor any rounding algorithm could achieve is ﬁ

Perhaps there is some characterization of pathological cases, such as the one from
this example, such that if we restrict the space of kernels L to avoid them, then it
is possible to find constant-factor rounding guarantees. However, additional simi-
larities between the multilinear and the softmax would have to be derived to prove
this. Thus, we defer the development of such rounding schemes to future work. In
our experiments, we apply pipage rounding and threshold rounding (rounding all
coordinates up or down using a single threshold), and these seem to work well in

practice, despite their lack of formal guarantees.

5.6 EXPERIMENTS

To illustrate the softmax optimization method, we compare it to GREEDY (Algo-
rithm 5), and to SYMMETRIC-GREEDY (Algorithm 7). Recall that the former has no
guarantees for non-monotone f such as log det, while the latter is a 3-approximation
in the unconstrained setting. We also test with RANDOMIZED-SYMMETRIC-GREEDY,
which has a ; approximation guarantee, but its results are not as good as those of
its deterministic counterpart, so we do not bother to report them here. (Its results
might improve if we ran it many times instead of just once; but in that case, for a
fair comparison, we should also allow the softmax algorithm many random restarts.)

While a naive implementation of the arg max in line 4 of GREEDY requires evalu-

ating the objective for each item in U, we exploit the fact that DPPs are closed under

106



[oe]

(o2}

N

o

log prob. ratio (vs. greedy)
N

log prob. ratio (vs. greedy)
X
log prob. ratio (vs. sym gr.)

50 100 150 200 50 100 150 200 50 100 150 200

w
e
(6]

—_
o

o

time ratio (vs. greedy)
time ratio (vs. greedy)

time ratio (vs. sym greedy)

50 100 150 200 50 100 150 200 50 100 150 200

Figure 5.6: Median and quartile log probability ratios (top) and running time ra-
tios (bottom) for 100 random trials. sOFTMAX-OPT versus: (left) GREEDY on uncon-
strained problems, (center) SYMMETRIC-GREEDY on unconstrained problems, (right)
GREEDY on constrained problems. Dotted black lines indicate equal performance.

conditioning to compute all necessary values with only two matrix inversions. We
report baseline runtimes using this optimized greedy algorithm, which is about 10
times faster than the naive version at N = 200. The code and data for all experiments

is publicly available here: http://www.seas.upenn.edu/~jengi/dpp-map.html.

5.6.1 SYNTHETIC DATA

As a first test, we seek the MAP set for DPPs whose kernels are drawn randomly
from a Wishart distribution. Specifically, we choose L = B" B, where B € RY*" has
entries drawn independently from the standard normal distribution, b;; ~ N(0,1).
This results in L ~ Wy(N,I), a Wishart distribution with N degrees of freedom
and an identity covariance matrix. This distribution has several desirable properties:
(1) in terms of eigenvectors, it spreads its mass uniformly over all unitary matrices

(James, 1964), and (2) the probability density of eigenvalues Ay, ..., Ay is:

al al H;‘V:Prl()‘i o )‘j)2
exp —izl)\i Zl—Il (=TI (5.54)

107


http://www.seas.upenn.edu/~jengi/dpp-map.html

the first term of which deters the eigenvalues from being too large, and the second
term of which encourages the eigenvalues to be well-separated. Property (1) implies
that we will see a variety of eigenvectors, which play an important role in the structure
of a DPP. Property (2) implies that interactions between these eigenvectors will be
important, as no one eigenvalue is likely to dominate. Combined, these properties
suggest that samples should encompass a wide range of DPPs.

For these tests, we let NV vary in the range [50,200], since most prior work with
(non-structured) DPPs in real-world scenarios has typically operated in this range.
Figure 5.6 (top left and center) shows performance results on these random ker-
nels in the unconstrained setting. SOFTMAX-OPT generally outperforms GREEDY, and
the performance gap tends to grow with the size of the ground set, N. Moreover,
Figure 5.6 (bottom left) illustrates that our method is of comparable efficiency at
medium N, and becomes more efficient as N grows. Despite the fact that the sym-
metric greedy algorithm (Buchbinder et al., 2012) has an improved approximation
guarantee of 3, essentially the same analysis applies to it as well (Figure 5.6, center).

For the constrained setting, we test a matching matroid constraint, as described
in Definition 5.10. To this end, we first generate two separate random matrices B
and B, then select random pairs of columns (B}, B*)). Averaging (B{" + B")) /2
creates one column of the final B matrix that we use to construct the DPP kernel:
L = B'B. Each item in Y is thus associated with a pair (i,5). We impose the
constraint that if the item corresponding to the (4, j) pair is selected, then no other
item with first element i or second element j can be included; i.e. the pairs cannot
overlap. Since exact duplicate pairs produce identical rows in L, they are never both
selected and can be pruned ahead of time. This means that our constraints are of
a graphical form that allows us to apply pipage rounding to the possibly fractional
result (though with no guarantees that the rounded solution will be approximately
optimal). The constrained variant of the GREEDY algorithm, shown in Algorithm 10,
simply has an additional step each iteration to prune from its “unused” set U the
items disallowed by the constraints.

Figure 5.6 (right) summarizes the performance of our algorithm in a constrained
setting. Interestingly, we see even greater gains over greedy in this setting. Enforcing
the constraints precludes using fast methods like L-BFGS though, so our optimiza-

tion procedure is in this case somewhat slower than greedy.

108



Algorithm 10: CONSTRAINED-GREEDY

=

e o o @
Y

]

1: Input: kernel L, polytope P

22 Y 0, U«Y

3: while U is not empty do

4 0"+ argmax,_, logdet(Lyyy)

o ¢
=]

log probability ratio (SOFTMAX / GREEDY)
b °
2 g

e © o ¢
o
3

2
S

5. if logdet(Lyyg+y) < logdet(Ly) then e g e o o w

6: break

70 Y« YUu{i} Figure 5.7: Plot of the log ra-
8: U« {i|igY, ey € P} tio of SOFTMAX-0PT’s det value to
9: Output: YV CONSTRAINED-GREEDY's det value

for ten settings of match weight 3.

5.6.2 POLITICAL CANDIDATE COMPARISON

Finally, we demonstrate our approach using real-world data. Consider a variant
of the document summarization task where we wish to summarize two bodies of
work in a manner that compares them. For instance, we might want to compare the
opinions of various authors on a range of topics—or even to compare the statements
made at different points in time by the same author, e.g. a politician believed to have
changed positions on various issues. For this task, we might first create a pool of
pairs of sentences ), where one item in each pair comes from each body of work.
We could then select a subset of these pairs Y C Y such that they cover the two
individual sources well (are diverse), but also provide a clean comparison (sentences
within a single selected pair are highly related). This problem can easily be cast as
log det maximization, subject to a matching matroid constraint.

In this vein, we extract all the statements made by the eight main contenders dur-
ing the 2012 U.S. Republican primary debates: Bachmann, Cain, Gingrich, Hunts-
man, Paul, Perry, Romney, and Santorum. Each pair of candidates (a, b) constitutes
one instance of our task. The task output is a set of statement pairs where the first
statement in each pair comes from candidate a and the second from candidate b.
The goal of optimization is to find a set that is diverse (contains many topics, such
as healthcare, foreign policy, immigration, etc.) but where both statements in each
pair are topically similar.

Before formulating a DPP objective for this task, we do some pre-processing.

109



We filter short statements, leaving us with an average of 179 quotes per candidate
(min = 93, max = 332). We parse the quotes, keeping only nouns, and further filter
nouns by document frequency, keeping only those that occur in at least 10% of the
quotes. Then we generate a feature matrix ® where @, is the number of times term
t appears in quote s. This matrix is normalized so that ||®,||» = 1, where @, is the
sth column.

For a given pair of candidates (a,b) we compute the quality of each possible
(@) 5
i 197
cosine similarity score, like that in Equation (4.25). We use r to denote the resulting

quote pair (s ) as the dot product of their columns in ®. This is essentially a

quality scores. While the model will naturally ignore low-quality pairs, for efficiency
(a)

we throw away such pairs in pre-processing. For each of candidate a’s quotes s;* we

keep a pair with quote:
j = argmax (s s (5.55)

, ]

J
from candidate b, and vice-versa. The quality scores of the unpruned quotes are re-
normalized to span the [0, 1] range. To create a similarity feature vector describing
each pair, we simply add the corresponding pair of single-quote feature vectors and
re-normalize, forming a new ® matrix.

Our task is to select some high-quality representative subset of the unpruned
quote pairs. We formulate this as a DPP objective by creating a kernel from the
quality and similarity features in the manner described by Equation (2.72). More
precisely, the kernel we use is L = QSQ, where S;; is a measurement of similarity
between quote pairs ¢ and j, and @ is a diagonal matrix with @Q;; representing the
match quality of pair i. We set S = ®'® and diag(Q) = \/exp(Sr), where j is a
hyperparameter. Larger /3 values place more emphasis on picking high-quality pairs
than on making the overall set diverse.

To help limit the number of pairs selected when optimizing the objective, we
add some constraints. While we could impose the simple constraint that no selected
pairs can have a shared quotation, here we impose slightly more restrictive constraints
by first applying quote clustering. For each candidate we cluster their quotes using
k-means on the word feature vectors and impose the constraint that no more than
one quote per cluster can be selected. After running sorrMax-opT with the polytope

version of these constraints, we round the final solution using the threshold rounding

110



scheme described in Section 5.5.3.

Figure 5.7 shows the result of optimizing this constrained objective, averaged
over all 56 candidate pairs. For all settings of 3 we outperform greedy. In general,
we observe that our algorithm is most improved compared to greedy when the con-
straints are in play. When J is small the constraints are less relevant, since the model
has an intrinsic preference for smaller sets. On the other hand, when § is very large
the algorithms must choose as many pairs as possible in order to maximize their

score; in this case the constraints play a more important role.

5.7 MODEL COMBINATION

In addition to theoretical guarantees and the empirical advantages we demonstrate
in Section 5.6, the proposed approach to the DPP MAP problem offers a great deal
of flexibility. Since the general framework of continuous optimization is widely used
in machine learning, this technique is a step towards making DPPs easy to combine
with other models. For instance, if P is the local polytope for a Markov random
field, then, augmenting the softmax objective with the (linear) log-likelihood of the
MRF—additive linear objective terms do not affect the lemmas proved above—
we can approximately compute the MAP configuration of the DPP-MRF product
model. We might in this way model diverse objects placed in a sequence, or fit to an

underlying signal like an image. Studies of these possibilities are left to future work.

111



Likelihood maximization

A DPP is compactly parameterized by a PSD kernel matrix L, or, equivalently, the

NI parameters (assuming the

corresponding marginal kernel K. Thus, with just
kernel is symmetric), a DPP assigns scores to 2" sets. The attractive computational
properties that DPPs offer—exact and eflicient normalization, marginalization, con-
ditioning, and sampling—arise in part from this compactness of the parameteriza-
tion. However, even this seemingly simple parameterization poses a challenge for
other inference tasks. We saw an example of this in the previous chapter, where
we discussed the NP-hard problem of finding a DPP’s mode. There, we assumed
knowledge of a kernel L that was a good fit for the task at hand. In practice, finding
such an L can also be difficult.

To fita DPP to a given task, we would like to learn the entries of its kernel matrix
by maximizing the log-likelihood of available data. This is non-trivial, as it involves
solving a non-convex optimization problem. Even in more restricted settings the
learning task is likely NP-hard. For example, often we have access to many features
that we know are relevant for a task, and are only unsure of the relative importance
of these features. As mentioned in Section 2.2.6, finding likelihood-maximizing

weights even for a simple additive combination of these features is conjectured to be

112



NP-hard.

In this chapter we first briefly consider alternative methods of learning a DPP ker-
nel using non-likelihood based methods. These bear a resemblance to approaches
for learning distance metrics or kernels for support vector machines (SVMs). Then,
we describe two very restrictive parameterizations for which the log-likelihood func-
tion is in fact concave. The first of these involves learning only a single weight for
each row of the kernel matrix (Kulesza and Taskar, 2011b). This amounts to learn-
ing what makes an item high-quality, but does not address the issue of what makes
two items similar. The second of these restrictive parameterizations involves learn-
ing weights for a linear combination of DPPs with fixed kernel matrices (Kulesza
and Taskar, 2011a). We follow the description of these concave optimization prob-
lems with a more complete characterization of what makes certain less restrictive
parameterizations a challenge.

The remainder of the chapter focuses on learning in these less restrictive settings.
First, with parametric kernels such as Gaussians (Affandi, Fox, Adams, and Taskar,
2014), then with non-parametric kernels—kernels where the entries can be arbitrary
as long as the overall matrix is PSD. In particular, for this last setting we describe
an expectation-maximization (EM) algorithm for optimizing a lower bound on log-
likelihood. Testing this method on a real-world product recommendation task, we
observe relative gains of up to 16.5% in test log-likelihood compared to the naive
approach of maximizing likelihood by projected gradient ascent. The majority of the
information that this chapter conveys regarding the EM algorithm and the product

recommendation experiments can also be found in Gillenwater et al. (2014).

6.1 ALTERNATIVES TO MAXIMIZING LIKELIHOOD

Before delving into likelihood maximization techniques, we briefly suggest here sev-
eral non-likelihood based alternatives for DPP learning, and explain why these meth-
ods are not quite as promising.

On the surface, the problem of learning a DPP kernel is similar to the problem of
learning an SVM kernel or learning a distance metric. In all of these cases we have
similar PSD constraints, and wish to set L;; so as to capture the similarity of two

elements (or two features). Upon deeper reflection though, significant differences

113



become apparent. Most importantly, basic SVM kernel learning and distance metric
learning can be cast as convex optimization problems.

For SVMs, in the binary classification setting we have labels y € {—1,1}. Stack-
ing these into a column vector y produces have a target kernel: L = yy ™. This kernel
has L;; = 1 when y; = y;, and L;; = —1 when y; # ;. One basic kernel learning
method then is to maximize the alignment between L and L:

tr(LTL)
LLEO | L) el Ll p

where the F subscript indicates the Frobenius norm. This can be cast as a semi-

(6.1)

definite programming problem (Lanckriet, Cristianini, Bartlett, Ghaoui, and Jor-
dan, 2004, Section 4.7).

For distance metric learning, the setup is often similar. The goal is to learn a
kernel L that defines a distance metric on a given feature space by assigning weights
to features and feature pairs. In the simplest case, judgments of the form “/ and j
are similar” or “i and j are dissimilar” are given as input. Let S be the set of similar
item pairs, and let D be the set of dissimilar item pairs. Then the learning task can
be formulated as the following convex optimization problem:

min Y [Bi—-Bjll; st > [B-Bji=>1, (6.2)

B0 s (ij)eD
where B; is the feature vector associated with the ith item, and || A||? = AT LA (Xing,
Ng, Jordan, and Russell, 2002).

Suppose we try to mimic these SVM kernel and distance metric learning methods
for DPP kernel learning. Let our training data be of the form V3, ..., Y7 such that
Y; € V. Then we can try to construct a target matrix L from these sets. For DPPs,
it is actually more natural to do this for the marginal kernel K, since data marginals

are easy to compute. The following sums yield the data marginals:

L= — Z i €Yy (6.3)
my = 5 310 €V (6.4)
M, = Z ({i,j,k} C V). (6.5)

114



The first of these translates directly into the diagonal of a target marginal kernel;
recalling from Equation (2.13) that diagonal elements of K are equal to size-1
marginals, our diagonal target is K;; = m;. Similarly, the size-2 marginals are equal
to det(Ky; 1), which we can use to solve for the magnitude of the off-diagonal

elements:

mg; = det(K{m}) = Kiinj — KZQJ ES |KU| = 4/ Kiinj RUE (66)

The size-3 marginals provide the signs of these off-diagonal elements. Writing out

one of these determinants we have:

The first term here is known (from the size-1 marginals), and the last three terms
are also known, as they depend only on the magnitude of the off-diagonal elements.
Thus, the value of m;j;, tells us the sign of the 2K, K, Kj), term. Assuming that there
are no zero off-diagonal elements, we can leverage this information, aggregated across
all O(N?) size-3 sets, to get all of K’s off-diagonal signs. Rising, Kulesza, and Taskar
(2014) provide an O(N?) algorithm that solves this aggregation problem. Finally,
given K, the kernel L is recoverable via Equation (2.14).

There are several obvious practical issues with this low-order marginal matching
scheme. First, if the data is not actually drawn from a DPP (Y; ~ Py), or if there are
insufficient samples to accurately estimate the m;j;,, then we immediately run into
problems with the above formulas. For instance, suppose that in all the sample sets
Y;, every time that item ¢ appears, we also see item j. Then for some constant ¢ we
have: m; = m; = m;; = c. The makes the square root in Equation (6.6) imaginary
for any ¢ < 1. Clearly, this data is not consistent with any DPP kernel.

Of course, the SVM kernel and distance metric learners do not attempt to directly
set kernel entries to match the data; rather, a more nuanced objective is optimized,
while enforcing a PSD constraint. Following this example, suppose we ask that K

match the marginals as closely as possible while remaining a valid DPP kernel. For

115



instance, we might try to solve:

N N N
S, D M= mally + Y I det(Ki ) — myll3 + (6.8)
I-K»0 =1 i=1 j=1
N N N
DO lidet(Kijay) — maell3 - (6.9)

Unfortunately, this objective is not necessarily convex. It is a degree-6 polyno-
mial, and minimizing an arbitrary polynomial, even subject to only polynomial
constraints, is NP-hard. There do exist techniques for optimizing semi-definite re-
laxations of polynomials, such as those summarized in Lasserre (2009, Chapter 5),
but these are somewhat complex. We leave further exploration of this to future work.

Finally, as Section 2.2.7 touched upon, optimizing an objective based on entropy
is also an alternative to likelihood maximization. Entropy maximization has to be
subject to reasonable data-based constraints. We could try to maximize entropy plus
Equation (6.9), but Equation (6.9) is a formidable objective itself. Alternatively,
given features, we could maximize entropy subject to constraints requiring expected
feature counts under the model to match their empirical counts. Depending on
how the matching was formulated, this might be a more feasible problem. However,
there is no known way of computing the DPP entropy of a fixed kernel exactly and
efficiently. So no matter how basic the constraints, the maximum entropy approach
would suffer from the difficulty that its objective value must be approximated. This
might be worth the added effort though, if this objective, as conjectured by Lyons
(2003), is indeed concave in K. Again, we leave exploration of this alternative to

future work.

6.2 FEATURE REPRESENTATION

Before discussing likelihood-based learning methods, we introduce here some nota-
tion for situations in which a single, fixed Y is inadequate. For example, consider
the simple document summarization task where we have a cluster of articles with
sentences YV, and wish to select a few sentences to constitute a summary. Suppose
we are given T sample summaries Y3,...,Yr C Y, and somehow learn a kernel L

from these. Then applying the MAP approximation techniques from the previous

116



chapter to this L, we would anticipate that the resulting subset Y would constitute a
better summary than the T given ones. This is the type of single, fixed ) scenario we
restrict to for the EM learning method in Section 6.6.3. However, in many practical
scenarios it is inadequate.

Suppose that instead of having many sample summaries for a single document
cluster, we have one or two sample summaries for many clusters. Further suppose
that our goal is not to come up with better summaries for #hese clusters, but to
extract knowledge of what makes a good summary in order craft summaries for
additional (test) document clusters. This requires that each sentence be associated
with some feature vector and that we learn weights on features, rather than item-
specific parameters. More concretely, let X' represent the input space (e.g. all articles).
Let our training sample be {X®, Y} drawn i.i.d. from a distribution D over
pairs: (X,Y) € X x 2Y)_ For features (e.g. tf-idf vectors) that can be computed for

any item (e.g. any sentence), let 6 represent corresponding feature weights. Then the

log-likelihood of the data is:

T
L(0) = logPy(y® | X1 (6.10)
t=1

[logdet(Lyw (X";0)) — logdet(L(X™;0) + I)] . (6.11)

]~

t=1

The goal here is to find 0 that model the distribution D well, and as such can be used
to identify high-probability Y when presented with an X unseen in the training data.
The next few learning methods we consider (Kulesza and Taskar, 2011b,a; Affandi
et al., 2014) apply to this more general, multi-ground-set learning problem.

6.3 CONCAVE LIKELIHOOD-BASED OBJECTIVES

We turn now to the consideration of two methods that optimize restrictive param-
eterizations with concave likelihood-based objectives.

The first of these is from Kulesza and Taskar (2011b). The authors assume that
a good similarity kernel, S = ®'®, is already known. All that remains then is to

learn item qualities. Kulesza and Taskar (2011b) propose the following log-linear

117



parametric form for quality:
8 (X30) = exp (307£,03) ) 612

where f,(X) € R™! is the quality feature vector for item 7. These f, could be
the same as the similarity features ¢;, but that is not necessary. Kulesza and Taskar
(2011b) prove that the resulting log-likelihood objective, Equation (6.11), is con-
cave in . Moreover, they show that the gradient is just the difference between the
empirical feature counts and the expected feature counts under the model. For a
single (X,Y") this is:

W@=ZLm—Zmuwum’ (6.13)

where K;; is the marginal probability of element i, from the diagonal of the marginal
kernel. The most expensive part of this computation is eigendecomposing L(X; 6) to
get K(X;0), which takes O(N*) time. Thus, we can efficiently compute and follow
this gradient to find globally optimal 6.

Kulesza and Taskar (2011b) experiment with this quality learning framework on
a document summarization task similar to the one described in the previous sec-
tion. They explore a variety of quality features, such as sentence length, position of
a sentence in its source article, and counts of personal pronouns. The likelihood-
learned model is compared to several baselines. For establishing the importance of
a DPP-tailored learning framework, the most significant of these baselines is one
that relies on logistic regression. In short, as an alternative to optimizing likeli-
hood, Kulesza and Taskar (2011b) consider setting 6 via logistic regression. To do
so, they transform the training data such that each sentence is labeled as “included”
as “not-included”, depending on whether it is in the oracle summary or not. Logis-
tic regression is then used to learn 6 to minimize classification error. As expected,
incorporating these 6 into a DPP model at test time does not produce summaries
that score as well (according to ROUGE metrics such as those seen in Table 4.1).
Despite having the advantage of the similarity model S at zesz time, the fact that
logistic regression training does not take S into account results in inferior 6.

A second restrictive parameterization with a concave likelihood-based objective

was proposed by Kulesza and Taskar (2011a). In this work, instead of draws from a

118



distribution D over (X,Y) pairs, the training data is of a different nature; labels come
in the form of pairs of sets, where one set is preferred over the other: {Y;", Y, }],.
The sets are assumed to have the same size: |Y;"| = |Y;7| = k, and the goal is to learn a

weighted sum of fixed k-DPP models. That is, assuming that a set of “expert” kernels

LW ... LW is given, the goal is to learn parameters ¢ that weight the associated
DPPs:
D D
Ps=> 0P sty fa=1. (6.14)
d=1 d=1

Note that this is different from learning a single kernel L(6) = 37, 6,9, which
is likely a much harder problem. The sum-of-DPPs learning is done by maximizing

the likelihood difference between the preferred sets and the dis-preferred:

T
Jmax > (V) - Pi(Y;). (6.15)
t=1

Kulesza and Taskar (2011a) show that this objective is concave, and possesses an
efficiently computable gradient. They test the learned model on an image search task
similar to the one described in Section 1.1. As one of the baselines, each individual
DPP with expert kernel L@ is checked to see which has the highest training data
accuracy. The highest-accuracy one is then compared to the sum-of-experts model
on the test data. The performance difference is statistically significant in favor of the
learned sum-of-experts.

The two methods discussed in this section are advantageous in that their simplic-
ity makes for an easy (concave) optimization problem. However, the first method
fails to address the need for learning similarity feature weights, which frequently
arises in practical applications. The second method partially addresses the similarity
learning question, but not by learning a single DPP model. Furthermore, it requires
storing a potentially large set of kernel matrices, and the final model distribution is
no longer a DPP. This means that many of the attractive computational and prob-
abilistic properties associated with DPPs are lost. The following section considers
more general parameterizations that lead to non-concave objectives, but that address

similarity learning in the context of crafting a single DPP model.

119



6.4 NON-CONCAVE LIKELIHOOD-BASED OBJECTIVES

As mentioned in Section 2.2.6, some parameterizations make likelihood maximiza-
tion more difficult: to learn weights such that L that is a weighted sum of fixed ker-
nels, LW, ... LY is conjectured to be NP-hard. Log-likelihood is also non-concave
in the setting where L is restricted to be a parametric kernel such as a Gaussian. Ad-
ditionally, non-concavity is present if the kernel entries are completely unrestricted
(except for a PSD constraint).

Kulesza (2012, Section 4.3.1) considers the possibility that non-concavity arises
simply from an identifiability problem. That is, for any DPP described by kernel L
and any diagonal matrix D, one can show that the kernel DLD~! describes the same
DPP (same probabilities). Even restricting to D for which this product matrix is
symmetric, there are up to 2"~ distinct kernels that all describe the same DPP; there
are exactly this many if L has no zeros. Lack of identifiability makes it impossible to
have a strictly concave objective, as that would require a single L to be better than all
the rest. More generally, it suggests that a concave objective is unlikely to be found
unless we first eliminate the identifiability issue. In fact, Kulesza (2012, Proposition
4.2) shows that only trivial objectives, whose maximizers are diagonal matrices, can
be concave in such a setting. Kulesza (2012, Theorem 4.1) further provides an exact

characterization of all kernels that give rise to the same DPP: D-similarity.

Definition 6.1. D-similarity: Tiwo N x N symmetric matrices L and M are D-similar
if L = DMD™ for some N x N diagonal matrix D with entries D;; € {—1,1} for
ie{l,...,N}.

With this definition in hand, we can restrict parameterizations such that there is
only a single candidate L for each DPP. Kulesza (2012) considers several methods for
doing this, but none of them results in a concave objective. For example, suppose
we require that all of L’s entries be non-negative. This takes care of the identifiability
problem. It also rules out some valid DPPs, but this restriction would probably be
worth that loss if it resulted in a concave objective. Unfortunately, the resulting

objective:

T
?%7 ;log det(Ly,) — logdet(L + I) (6.16)

120



is still a difference of two concave terms, which is non-concave overall. Thus, it
seems that identifiability is only one component of the hardness of DPP learning.
Still, restricting parameterizations to avoid the identifiability problem may be a good
practical tool to use for smoothing the search space. The EM method of Section 6.6.3

does not use this trick, but it could easily be incorporated.

6.5 MCMC APPROACH FOR PARAMETRIC KERNELS

In this section, we summarize the methods that Affandi et al. (2014) develop for
handling non-concavity of log-likelihood in the setting where L is restricted to be
a parametric kernel, such as a Gaussian. Note that requiring L to take on such
parameterizations represents a restriction of the search space (though not a significant
enough restriction to make log-likelihood concave). For example, lost expressivity
is obvious in the case of a Gaussian kernel—it is stationary, so its kernel values only
depend on differences between feature vectors, B; — B;, rather than absolute feature
values.

Prior to Affandi et al. (2014), the only attempt to learn such parametric DPP
kernels was the work of Lavancier, Moller, and Rubak (2012, Section 6). They ap-
plied the Nelder-Mead method to optimize likelihood. This method has no conver-
gence guarantees though, and can even fail to find the optimum of a strictly convex
function (McKinnon, 1998). Its advantage is that it doesnt require gradient com-
putations. This method may be of value in the continuous DPP setting, described
in Section 3.4, but for discrete DPPs computing the gradient is not difficult; Affandi
etal. (2014, Appendix A) derive formulas for log-likelihood gradients in the special
cases of Gaussian kernels and polynomial kernels.

Affandi et al. (2014) focus on developing Bayesian methods for selecting L’s pa-
rameters. Rather than trying to maximize likelihood, Affandi et al. (2014) propose
sampling from the posterior distribution over kernel parameters. Let P(6) represent

a parameter prior. Then the posterior over 6, given example sets Y7, .., Y, is:

: (6.17)

p(@’Yl,...YT)O(P(mH%

Computing the normalizer for this distribution may be difficult, so rather than di-

121



rectly sampling 6, Affandi et al. (2014) rely on Markov chain Monte Carlo (MCMC)
methods. The first one they explore is random-walk Metropolis Hastings. To speed
computation of the acceptance ratio, which requires computing det(L(0) + I), they
further propose approximating L(f) by truncating its eigendecomposition to the
top-k largest eigenvalues (and associated eigenvectors). This is important for mak-
ing the method applicable to continuous DPPs, whose eigendecompositions may
be an infinite sum. The second MCMC method Affandi et al. (2014) apply is slice
sampling. This type of sampling does not require tuning a proposal distribution, and
hence can in some cases converge more quickly than Metropolis Hastings. No mix-
ing time bounds are proven, but as a test of chain convergence Affandi et al. (2014)
show that it is simple to check whether the model moments match the empirical
data moments well. If the feature vector for the ith item is ¢;, then in the discrete

case we can write the mth model moment as:

N
oo™ = > 1" Ka(0), (6.18)
i=1
where K(0) is the marginal kernel. If these are close to the data moments:
T
Elp"] =) > o, (6.19)
t=1 i:i€Yy

then the chain has most likely converged.

Affandi et al. (2014) test these MCMC methods on two practical applications.
The first is diabetic neuropathy prediction: skin tissue imaging reveals that nerve
fibers become more clustered as diabetes progresses, so the task in this case is to
classify images of nerve fibers as belonging to mildly diabetic versus severely diabetic
patients. To accomplish this, Affandi et al. (2014) first separate the data into these
two classes and then sample two sets of parameters 6, 6 to define a separate Gaussian
kernel for each. The dataset available is small, but in a leave-one-out cross-validation
test, all images were found to have higher likelihood under the correct 6;. The second
application Affandi et al. (2014) test re-purposes the data from Kulesza and Taskar
(2011a)’s image search task. Again assuming Gaussian kernels, for each image search
query two sets of parameters are learned, 61, 6,. The first is learned from example sets
Y; consisting of the top six image results from Google, and the second is learned from

example sets that are partially human-annotated. The resulting parameters indicate

122



some potential discrepancies in the features that Google considers important for

diversity versus those that humans consider important. For example, color seems to

be more important to people for queries such as “cars” and “dogs” than the Google
q g g

search engine currently accounts for.

6.6 EM APPROACH FOR UNRESTRICTED KERNELS

In this section, we describe an expectation-maximization (EM) scheme for optimiz-
ing likelihood in the completely unrestricted setting where L’s entries can take on
any values (as long as the overall L is PSD). In particular, the algorithm we derive
exploits L’s eigendecomposition and negates the need for the projection step that is
required to maintain positive semi-definiteness of L when applying naive gradient
ascent.

We will assume that the training data consists of n example subsets, {Y1,...,Y,},
where Y; C {1,..., N} for all <. Our goal is to maximize the likelihood of these
example sets by learning a kernel L that assigns them high probability. To simplify
some of the math, we will work with the marginal kernel K instead of L, but Equa-
tion (2.14) can be used to obtain L from K at any point. We first describe in Sec-
tion 6.6.1 a naive optimization procedure: projected gradient ascent on the entries
of the marginal kernel K, which will serve as a baseline in our experiments. We then
develop an EM method: Section 6.6.2 changes variables from kernel entries to eigen-
values and eigenvectors (introducing a hidden variable in the process), Section 6.6.3
applies Jensen’s inequality to lower-bound the objective, and Sections 6.6.4-6.6.6
outline a coordinate ascent procedure on this lower bound. We conclude by testing
the resulting EM algorithm on a real-world product recommendation task. Sec-

tion 6.7 describes these empirical results.

6.6.1 PROJECTED GRADIENT ASCENT

Recalling Equation (2.16), the log-likelihood can be expressed in terms of the

marginal kernel K as follows:

LK) = znzlog (|det(K — Iy)]) (6.20)

123



The associated optimization problem is:

max L(K). (6.21)
I—-K*>0

where the first constraint ensures that X is PSD and the second puts an upper limit of
1 on its eigenvalues. The partial derivative of £ with respect to K is easy to compute

by applying a standard matrix derivative rule (Petersen and Pedersen, 2012, Equation

57):

OL(K) _ S
S = ;(K—[Yi) . (6.22)

Thus, projected gradient ascent (Levitin and Polyak, 1966) is a viable, simple op-
timization technique. Algorithm 11 outlines this method, which we refer to as K-
Ascent (KA). The initial K supplied as input to the algorithm can be any PSD matrix
with eigenvalues < 1. The first part of the projection step, max(A,0), chooses the
closest (in Frobenius norm) PSD matrix to @ (Henrion and Malick, 2011, Equa-
tion 1). The second part, min(A, 1), caps the eigenvalues at 1. Notice that only the
eigenvalues have to be projected; K remains symmetric after the gradient step, so its
eigenvectors are already guaranteed to be real.

Unfortunately, the eigenvalue projection can take us to a poor local optima. To
see this, consider the case where the starting kernel K is a poor fit to the data. In this
case, a large initial step size ) will probably be accepted; even though such a step will
likely result in the truncation of many eigenvalues at 0, the resulting matrix will still
be an improvement over the poor initial K. However, with many zero eigenvalues,
the new K will be near-diagonal, and, unfortunately, Equation (6.22) dictates that
if the current K is diagonal, then its gradient is as well. Thus, the KA algorithm
cannot easily move to any highly non-diagonal matrix. It is possible that employing
more complex step-size selection mechanisms could alleviate this problem, but the
EM algorithm we develop in the next section will negate the need for these.

The EM algorithm we develop also has an advantage in terms of asymptotic run-
time. The computational complexity of KA is dominated by the matrix inverses of
the £ derivative, each of which requires O(N“) operations, and by the eigendecom-
position needed for the projection, also O(N*). The overall runtime of KA, assuming
T; iterations until convergence and an average of T; iterations to find a step size, is

O(TinN* + TyToN¥). As we will show in the following sections, the overall runtime

124



Algorithm 11: K-Ascent (KA) Algorithm 12:

1: Input: K, {Yi,... Y, }, c Expectation-Maximization (EM)
2: repeat I: Input: K, {Y3,...,Y,}, ¢

3 G+ 2 (Eq.6.22) 2: Eigendecompose K into V, A

4 N« 1 3: repeat

5. repeat 4: forj=1,....,Ndo

6: Q <« K +nG 5: No— I3 p(jeJ|Y)
7: Eigendecompose Q into V, A 6 G« 2EWVA) V" (E 6.61)

8: A < min(max(A,0), 1) 7. n1

9: Q Vdiag()\)VT 8: repeat
10: n 3 9: V'« Vexpln (VTG —GTV)]
11:  until £(Q) > L(K) 10: n 1
120 6+ L£(Q) - L(K) 1 antil £V, X) > £(V,\)
13: K+ @ 122 6« F(V',X)=F(V,X)
14: until § < ¢ 13: A< XN, V&V, ne2p
15: Output: K 14: until 6 < ¢

15: Output: K

Figure 6.1: Left: Projected gradient ascent on the entries of K. Right: Expectation-
maximization on the eigendecomposition of K.

of the EM algorithm is O(TynNk?* + T, T, N*), which can be substantially better than
KA’s runtime for k < N.

6.6.2 EIGENDECOMPOSING

As we have seen in previous chapters, eigendecomposition is key to many core DPP
algorithms such as sampling and marginalization. This is because the eigendecompo-
sition provides an alternative view of the DPP as a generative process, which often
leads to more efficient algorithms. For instance, sampling a set Y can be broken
down into a two-step process, the first of which involves generating a hidden vari-
able J C {1,..., N} that codes for a particular set of K’s eigenvectors. We review
this process below, then exploit it to develop an EM optimization scheme.

Suppose K = VAV is an eigendecomposition of K. Let V'’ denote the sub-
matrix of V' containing only the columns corresponding to the indices in a set

J C {1,...,N}. Consider the corresponding marginal kernel, with all selected eigen-

125



values set to 1:
K =Y vl =V/(V)T. (6.23)
Jiged
Recall that any such kernel whose eigenvalues are all 1 is called an elementary DPP.
According to Hough et al. (2006, Theorem 7), a DPP with marginal kernel K is a

mixture of all 2V possible elementary DPPs:

PY)= > PO N J[a-N). (6.24)
J:JC{1,..,N} jijed  jijed
where PV/(Y) = 1(|Y| = |J|) det(KY) . (6.25)

This perspective is the basis for the sampling method of Algorithm 1, where first a
set J is chosen according to its mixture weight in Equation (6.25), and then PV is
sampled from. In this sense, the index set J is an intermediate hidden variable in
the process for generating a sample Y.

We can exploit this hidden variable J to develop an EM algorithm for learning
K. Re-writing the data log-likelihood to make the hidden variable explicit:

£(K) = £ V) = 3 log (ZpK<J,m) (6.26)

= > _log (ZPK(Yi | J)pK(J)> : (6.27)
i=1 J

where pr(J)= T[N JT (1 =), (6.28)
Jjiged  gg¢d
and pr(Y; | J) = 1(|Yi] = [J) ded([V/ (V) T]y) . (6.29)

These equations follow directly from Equations (6.23) and (6.25).

6.6.3 LOWER BOUNDING THE OBJECTIVE

We now introduce an auxiliary distribution, ¢(J | Y;), and deploy it with Jensen’s
inequality to lower-bound the likelihood objective. This is a standard technique for
developing EM schemes for dealing with hidden variables (Neal and Hinton, 1998).

126



Proceeding in this direction:
RN J,Yi)
_;log<;qJ|Y J|Y;)> > (630)
(

ZZ (J|Y)) log(pl(( H}:))) F(q,V,A). (6.31)

=1 J

The function F(g,V, A) can be expressed in either of the following two forms:

F(g,V,A) =) —KL(q(J | Y)) || pxe(J | Y)) + LV, A) (6.32)

=1
= B, llogpk(J.Y:)] + H(q), (6.33)
i=1
where H is entropy. Consider optimizing this new objective by coordinate ascent.
From Equation (6.32) it is clear that, holding V, A constant, F' is concave in g. This
follows from the concavity of KL divergence. Holding ¢ constant in Equation (6.33)
yields the following function:

) =33 ald V) [logplJ) +logpw(Vi | )] . (6.34)

=1 J
This expression is concave in \;, since log is concave. However, the optimization
problem is not concave in V due to the non-convex V'V = I constraint. We describe
in Section 6.6.6 one way to handle this.

To summarize, coordinate ascent on F'(q, V, A) alternates the following “expecta-
tion” and “maximization” steps; the first is concave in ¢, and the second is concave

in the eigenvalues:

E-step: mmZKL (J 1Y) || px(J | V7)), (6.35)
=1
M-step: maxZE logpr(JY;)] st. 0<A<1L, V'V =1, (6.36)
=1
6.6.4 E-sTEP

The E-step is easily solved by setting ¢(.J | Y;) = px(J | Y;), which minimizes the KL

divergence. Interestingly, we can show that this distribution is itself a conditional

127



DPP, and hence can be compactly described by an N x N kernel matrix. Thus, to
complete the E-step, we simply need to construct this kernel. Lemma 6.2 gives an

explicit formula.

Lemma 6.2. At the completion of the E-step, q(J | Y;) with |Y;| = k is a k-DPP with

(non-marginal) kernel QYi:

Q"' = RZYR, and q(J | Y;) < 1(|Y;] = |J]) det(QY), where (6.37)
U=VT, Z%=U%U")7, and R = diag (\/)\/(1 - )\)) . (6.38)

Proof. Since the E-step is an unconstrained KL divergence minimization, we have:

0190 =il 1) = U o (13 = il 1 9), (639

where the proportionality follows because V; is held constant in the conditional ¢

distribution. Recalling Equation (6.29), notice that px(Y; | J) can be re-expressed
as follows:

pr(Y; | 1) = 1(|Yi| = |J]) dee([V7 (V') ]y,) (6.40)
L([Yi| = 7)) det([U™(U™) ]5) - (6.41)

This follows from the identity det(AAT) = det(A" A), which applies for any full-rank
square matrix A. The subsequent swapping of J and Y;, once V" is re-written as U,

does not change the indexed submatrix. Plugging this back into Equation (6.39):

a(J | Y3) o pre()1(|Yi| = | J]) det([UY(UY)T]) (6.42)
= pr())1(Yi| = |T) PV (]), (6.43)

where PU"" represents an elementary DPP, just as in Equation (6.23), but over .J
rather than over Y. Multiplying this expression by a term that is constant for all .J
maintains proportionality and allows us to simplify the the px (/) term. Taking the
definition of px (/) from Equation (6.29):

47 | V) o (H%) 1V =P [T TLa-2) (644

Jj=1 jged  gig¢d

=1l =P ) I 725 (6.45)




Having eliminated all dependence on j ¢ J, it is now possible to express ¢(J | Y;)
as the J principal minor of a PSD kernel matrix (see Q" in the statement of the

lemma). Thus, g is a k-DPP. ]

6.6.5 M-STEP EIGENVALUE UPDATES

The M-step update for the eigenvalues is a closed-form expression with no need for
projection. Taking the derivative of Equation (6.34) with respect to )\;, setting it

equal to zero, and solving for \;:

WD ;). 4

SEPIPNTLG (6.46)
The exponential-sized sum here is impractical, but we can eliminate it. Recall from
Lemma 6.2 that ¢(J | Y;) is a k-DPP with kernel Q. Thus, we can use k-DPP
marginalization algorithms to efficiently compute the sum over J. Specifically, the
exponential-size sum over .J from Equation (6.46) can be reduced to the compu-
tation of an eigendecomposition and several elementary symmetric polynomials on
the resulting eigenvalues. Let ¢,”(Q¥?) be the (k — 1)-order elementary symmetric
polynomial over all eigenvalues of Qi except for the jth one. Let V represent the
eigenvectors of Q¥, with ©,(j) indicating the jth element of the rth eigenvector.

Then, by direct application of Equation (3.5), ¢’s singleton marginals are:

N
> a1 =ali € T 1) - ﬁzwﬁeg_lmﬂy (6.47)
Jijed Y] r=1
As previously noted, elementary symmetric polynomials can be efficiently computed
using Baker and Harwell (1996)’s “summation algorithm”.
We can further reduce the complexity of this formula by noting that rank of the
N x N matrix Q%" = RZYR is at most |Y;|. Because Q¥ only has |Y;| non-zero

eigenvalues, it is the case that, for all r:
ey (Q) = efY, (QY). (6.48)

Recalling that the eigenvectors and eigenvalues of Q7 are denoted V, A, the compu-

tation of the singleton marginals of ¢ that are necessary for the M-step eigenvalue

129



updates can be written as follows:

1 Vil

N
Q(] eJ ‘ Y;) = WZ@T(‘])QS\ €|Y‘ 1 Z’UT . (649)
Y3 r=1

This simplified formula is dominated by the O(N¥) cost of the eigendecompo-
sition required to find V. This cost can be further reduced, to O(Nk?), by eigende-
composing a related matrix instead of Q*i. Specifically, consider the |Y;| x |Y;| matrix
HY = V3, R*Vy. Let V and A be the eigenvectors and eigenvalues of HY:. This A
is identical to the non-zero eigenvalues of QY7 A, and its eigenvectors are related as

follows:

V= RVYff/diag (i (6.50)

%)
Getting V' via Equation (6.50) is an O(N|Y;|?) operation, given the eigendecomposi-
tion of HYi. Since this eigendecomposition is an O(|Y;|) operation, it is dominated
by the O(N|Y;|?). To compute Equation (6.49) for all j requires only O(Nk) time,
given V. Thus, letting & = max; |Y;|, the size of the largest example set, the overall
complexity of the eigenvalue updates is O(nNk?).

Note that this eigenvalue update is self-normalizing, so explicit enforcement of
the 0 < \; < 1 constraint is unnecessary. There is one small caveat: the Q" matrix
will be infinite if any ); is exactly equal to 1 (due to R in Equation (6.38)). In
practice, we simply tighten the constraint on A to keep it slightly below 1.

6.6.6 M-STEP EIGENVECTOR UPDATES

Turning now to the M-step update for the eigenvectors, notice that Equation (6.34)’s
pr(J) term does not depend on the eigenvectors, so we only have to be concerned
with the pr(Y; | J) term when computing the eigenvector derivatives. Recall that

this term is defined as follows:
pic(Yi | 1) = 1(¥il = ) dex ([V/ (V)T ) - (6.51)

Thus, applying standard matrix derivative rules such as Petersen and Pedersen (2012,
Equation 55), the gradient of the M-step objective with respect to entry (a,b) of V

is:
n

aF V 2 ZZ (J | Yi)L(a € Y; Abe J2[(Wy) o @ - we(Yi),  (6.52)

130



where Wy, = [V/(V7)T]y, and the subscript gy, (a) indicates the index of a in Y;.
The [(W5.) ™"y, ) indicates the corresponding row in Wy, and v, (Y;) is eigenvector
b restricted to Y;. Based on this, we can more simply express the derivative with

respect to the entire V' matrix:

oA RTINS (6.53)
where the V = diag(1y,)Vdiag(1,) is equal to V with the rows ¢ ¢ Y and the columns
j ¢ J zeroed. Similarly, the other half of the expression represents (W5 )~' sorted
such that gy;(¢) = ¢ and expanded with zero rows for all ¢ ¢ Y; and zero columns
for all ¢ ¢ Y;. The exponential-size sum over .J could be approximated by drawing
a sufficient number of samples from ¢, but in practice that proves somewhat slow.
It turns out that it is possible, by exploiting the relationship between Z and V, to

perform the first gradient step on V without needing to sample g.

EXACT COMPUTATION OF THE FIRST GRADIENT

Recall that Z* is defined to be UY#(UY#)T, where U = V' The px(Y; | J) portion of

the M-step objective, Equation (6.51), can be re-written in terms of Zi:
pic(Yi | J) = 1(Yil = |J]) dee (277 . (6.54)

Taking the gradient of the M-step objective with respect to Z¥i:

OF(V, A)

EYAL = ZQ(J | Yz)(Z}Q)_l (655)

J

Plugging in the £-DPP form of ¢(J | V;) derived in Lemma 6.2 of the E-step section:

OF(V.A) 1 -
= d NZy) 6.56
0 @, 2, @) (6.56)

Recall from Section 3.1 the identity used to normalize a k-DPP, and consider taking

its derivative with respect to Z¥::

S de(@) =M@Y = Y de@)(zyy = 2@

derivative wrt ZYi OYAL

J:|J|=k J:|J|=k
(6.57)

131



Note that this relationship is only true at the start of the M-step, before V' (and
hence Z) undergoes any gradient updates; a gradient step for V would mean that Q*,
which remains fixed during the M-step, could no longer can be expressed as RZ* R.
Thus, the formula we develop in this section is only valid for the first gradient step.

Plugging Equation (6.57) back into Equation (6.50):

OF(V,A) 1 0efy,(Q") 6.58)
0Z% T eN. Q%) 0z% '

Multiplying this by the derivative of Z** with respect to V and summing over i gives
the final form of the gradient with respect to V. Thus, we can compute the value of

the first gradient on V' exactly in polynomial time.

FASTER COMPUTATION OF THE FIRST GRADIENT

Recall from Section 6.6.5 that the rank of the N x N matrix Q¥ = RZYR is at
most |Y;| and that its non-zero eigenvalues are identical to those of the |V;| x |Y]
matrix HY = V4,R?V;!. Since the elementary symmetric polynomial e depends
only on the eigenvalues of its argument, this means H* can substitute for Q¥ in

Equation (6.58), if we change variables back from Z to V:

OF(V,A) 1 Oefy, (H")
oV _;e&_(HYi) ov. (6.59)

where the i-th term in the sum is assumed to index into the Y; rows of the V deriva-

tive. Further, because H is only size |Y;| x |Y;|:
e (H") = e[y |(H") = det(H""). (6.60)

Plugging this back into Equation (6.59) and applying standard matrix derivative

rules:

n Y, n
%‘V/’A) - ; det(lm) ad‘gg] ) _ gz(ﬂi’i)lv,ﬁ?. (6.61)
Thus, the initial M-step derivative with respect to V' can be more efficiently com-
puted via the above equation. Specifically, the matrix H** can be computed in time
O(N|Y;i|?), since R is a diagonal matrix. It can be inverted in time O(|Y;|*), which is
dominated by O(N|Y;|?). Thus, letting £ = max; |Y;|, the size of the largest example
set, the overall complexity of computing the eigenvector gradient in Equation (6.61)

is O(nNk?).

132



STEP SIZE AND ORTHOGONALITY

Equation (6.61) is only valid for the first gradient step, so in practice we do not
bother to fully optimize V' in each M-step; we simply take a single gradient step
on V. Ideally we would repeatedly evaluate the M-step objective, Equation (6.34),
with various step sizes to find the optimal one. However, the M-step objective is
intractable to evaluate exactly, as it is an expectation with respect to an exponential-
size distribution. In practice, we solve this issue by performing an E-step for each
trial step size. That is, we update ¢’s distribution to match the updated V and A
that define px, and then determine if the current step size is good by checking for
improvement in the likelihood L.

There is also the issue of enforcing the non-convex constraint V'V = I. We
could project V' to ensure this constraint, but, as previously discussed for eigenvalues,
projection steps often lead to poor local optima. Thankfully, for the particular con-
straint associated with V, more sophisticated update techniques exist: the constraint
VTV = I corresponds to optimization over a Stiefel manifold, so the algorithm from
Edelman, Arias, and Smith (1998, Page 326) can be employed. In practice, we sim-
plify this algorithm by neglecting second-order information (the Hessian) and using
the fact that the V' in our application is full-rank. With these simplifications, the

following multiplicative update is all that is needed:

oL oL\ "
T_— [
"(V v <av) V)

where exp denotes the matrix exponential and 7 is the step size. Algorithm 12 sum-

V + Vexp , (6.62)

marizes the overall EM method. As previously mentioned, assuming 7} iterations
until convergence and an average of T} iterations to find a step size, its overall run-
time is O(TinNk? + T1T,N*). 'The first term in this complexity comes from the
eigenvalue updates, Equation (6.49), and the eigenvector derivative computation,
Equation (6.61). The second term comes from repeatedly computing the Stiefel
manifold update of V, Equation (6.62), during the step size search.

133



6.7 EXPERIMENTS

We test the proposed EM learning method (Algorithm 12) by comparing it to K-
Ascent (KA, Algorithm 11). Code and data for all experiments can be downloaded
here: https://code.google.com/p/em-for-dpps. Both EM and KA require a starting
marginal kernel K. Note that neither EM nor KA can deal well with starting from
a kernel with too many zeros. For example, starting from a diagonal kernel, both
gradients, Equations (6.22) and (6.61), will be diagonal, resulting in no modeling
of diversity. Thus, the two initialization options that we explore have non-trivial off-
diagonals. The first of these options is relatively naive, while the other incorporates
statistics from the data.

For the first initialization type, we use a Wishart distribution with N degrees
of freedom and an identity covariance matrix to draw L ~ Wy (N, I). The Wishart
distribution is relatively unassuming: in terms of eigenvectors, it spreads its mass uni-
formly over all unitary matrices (James, 1964). We make just one simple modifica-
tion to its output to make it a better fit for practical data: we re-scale the resulting ma-
trix by 1/N so that the corresponding DPP will place a non-trivial amount of prob-
ability mass on small sets. (The Wishart’s mean is N1, so it tends to over-emphasize
larger sets unless we re-scale.) We then convert L to K via Equation (2.12).

For the second initialization type, we employ a form of moment matching. Let
m; and m;; represent the normalized frequencies of single items and pairs of items

in the training data:

EZH(z‘ng/\jng). (6.63)
/=1 n /=1

1 n
i — — ]]_.GY, i] —
m nE (i V) My

Recalling the definition of the marginal kernel from Equation (2.13), we attempt to

match the first and second order moments by setting K according to:

To ensure a valid starting kernel, we then project K by clipping its eigenvalues at 0
and 1.

134


https://code.google.com/p/em-for-dpps/wiki/README

Category | N | # of Regs
feeding | 100 13300
gear 100 11776
diaper 100 11731
bedding | 100 11459
apparel 100 10479

bath 100 10179
toys 62 7051
health 62 9839
media 58 4132
strollers 40 5175
safety 36 6224

carseats 34 5296
furniture 32 4965

Table 6.1: Size of the post-filtering ground set for each product category, and the
associated number of sub-registries (subsets of {1,..., N}).

6.7.1 BABY REGISTRY TESTS

Consider a product recommendation task, where the ground set comprises N prod-
ucts that can be added to a particular category (e.g., toys or safety) in a baby registry.
A very simple recommendation system might suggest products that are popular with
other consumers. However, this does not account for negative interactions; if a con-
sumer has already chosen a carseat, they most likely will not choose an additional
carseat, no matter how popular it is with other consumers. DPPs are ideal for captur-
ing such negative interactions. A learned DPP could be used to populate an initial,
basic registry, as well as to provide live updates of product recommendations as a
consumer builds their registry.

To test our DPP learning algorithms, we collected a dataset consisting of 29,632
baby registries from Amazon.com, filtering out those listing fewer than 5 or more
than 100 products. Amazon characterizes each product in a baby registry as belong-
ing to one of 18 categories, such as “toys” and“safety”. For each registry, we created
sub-registries by splitting it according to these categories. (A registry with 5 toy items
and 10 safety items produces two sub-registries.) For each category, we then filtered

down to its top 100 most frequent items, and removed any product that did not oc-

135



cur in at least 100 sub-registries. We discarded categories with N < 25 or fewer than
2N remaining (non-empty) sub-registries for training. The resulting 13 categories
have an average inventory size of N = 71 products and an average number of sub-
registries n = 8,585. We used 70% of the data for training and 30% for testing. Note
that categories such as “carseats” contain more diverse items than just their name-
sake; for instance, “carseats” also contains items such as seat back kick protectors
and rear-facing baby view mirrors. See Table 6.1 for more dataset details.

Figure 6.2 shows the relative test log-likelihood differences of EM and KA when
starting from a Wishart initialization. These numbers are the medians from 25 trials
(draws from the Wishart). Quartiles for this experiment and all subsequent ones
can be found in Table 6.2. EM gains an average of 3.7%, but has a much greater
advantage for some categories than for others. Speculating that EM has more of
an advantage when the off-diagonal components of K are truly important—when
products exhibit strong negative interactions—we created a matrix M for each cat-
egory with the true data marginals from Equation (6.63) as its entries. We then
checked the value of d = %Hdgﬁ—%'h This value correlates well with the relative
gains for EM: the 4 categories for which EM has the largest gains (safety, furni-
ture, carseats, and strollers) all exhibit d > 0.025, while categories such as feeding
and gear have d < 0.012. Investigating further, we found that, as foreshadowed in
Section 6.6.1, KA performs particularly poorly in the high-d setting because of its
projection step—projection can result in KA learning a near-diagonal matrix.

If instead of the Wishart initialization we use the moments-matching initializer,
this alleviates KA’s projection problem, as it provides a starting point closer to the
true kernel. With this initializer, KA and EM have comparable test log-likelihoods
(average EM gain of 0.4%). However, the moments-matching initializer is not a
perfect fix for the KA algorithm in all settings. For instance, consider a data-poor
setting, where for each category we have only n = 2N training examples. In this case,
even with the moments-matching initializer EM has a significant edge over KA, as
shown in Figure 6.2: EM gains an average of 4.5%, with a maximum gain of 16.5%
for the safety category.

To give a concrete example of the advantages of EM training, Figure 6.3 shows
a greedy approximation (Algorithm 5) to the most-likely ten-item registry in the
category “safety”, according to a Wishart-initialized EM model. The corresponding

136



safety
furniture
carseats
strollers
health
bath
media
toys
bedding
apparel
diaper
gear
feeding

safety
furniture
carseats
strollers
health
bath
media
toys
bedding
apparel
diaper
gear
feeding

Figure 6.2: Relative test log-likelihood differences, 100, using: Wishart ini-
tialization in the full-data setting (top), and moments-matching initialization in the

relative log likelihood difference

N 16.5
A 10.4
... 58
s
5.3
R 5
1.9

2.3
PR B
s

-0.1 |

2 6

Mos

relative log likelihood difference

(EM—KA)

data-poor setting (bottom).

137



Wishart Moments Moments

(all data) (less data)

safety (10.88) 11.05 (11.12) -0.13 (10.19) 16.53 (19.46)
furniture | (9.80) 9.89 (10.07) 0.23 (8.00) 10.47 (13.57)
carseats (8.06) 8.16 (8.31) 0.61 (3.40) 5.85 (8.28)
strollers (7.66) 7.77  (7.88) -0.07 (2.51) 5.35 (7.41)
health (2.50) 2.54 (2.58) 1.37 (2.67) 5.36 (6.03)

Category

bath (2.50) 254  (2.59) -0.24 (2.22) 356 (4.23)
media (2.37) 242 (2.49) -0.17 (0.44) 193 (2.77)
toys (1.76) 1.80 (1.83) 0.13 (1.01) 2.39 (4.30)

bedding | (0.42) 1.34 (1.44) | 2.81 | (2.44) 3.19 (3.70)
apparel | (0.88) 0.92 (0.93) | 0.53 | (0.78) 1.59 (2.23)
diaper 0.50) 058 (1.02) | -047 | (-0.87) -0.19 (1.26)

gear (0.03) 0.05 (0.07) 0.86 (1.36) 2.63 (3.22)
feeding (-0.11) -0.09 (-0.07) -0.03 (-1.32) 0.61 (1.22)
average 3.76 0.41 4.55

Table 6.2: Relative test log-likelihood differences, 100 (El\‘AK*AIfA), for three cases: a
Wishart initialization, a moments-matching initialization, and a moments-matching
initialization in a low-data setting (only n = 2N examples in the training set). For
the first and third settings there is some variability: in the first setting, because the
starting matrix drawn from the Wishart can vary; in the third setting, because the
training examples (drawn from the full training set used in the other two settings)
can vary. Thus, for these two settings the numbers in parentheses give the first and

third quartiles over 25 trials.

138



Graco Sweet Slumber  Boppy Noggin Nest Cloud b Twilight Braun ThermoScan Aquatopia Bath

Sound Machine Head Support Constellation Night Light Lens Filters Thermometer Alarm
B e @
(@] o’

@

\

[
£

(@] ©
Britax EZ-Cling TL Care Organic Regalo Easy Step VTech Comm. Infant Optics
Sun Shades Cotton Mittens Walk Thru Gate Audio Monitor Video Monitor

Figure 6.3: A high-probability set of size & = 10 selected using an EM model for the
“safety” category.

KA selection differs from Figure 6.3 in that it replaces the lens filters and the head
support with two additional baby monitors: “Motorola MBP36 Remote Wireless
Video Baby Monitor”, and “Summer Infant Baby Touch Digital Color Video Mon-
itor”. It seems unlikely that many consumers would select three different brands of
video monitor.

Having established that EM is more robust than KA, we conclude with an analy-
sis of runtimes. Figure 6.4 shows the ratio of KA’s runtime to EM’s for each category.
As discussed earlier, EM is asymptotically faster than KA, and we see this borne out
in practice even for the moderate values of N and n that occur in our registries
dataset: on average, EM is 2.1 times faster than KA.

In summary, we have explored in this section learning DPPs in a setting where
the kernel K is not assumed to have fixed values or a restrictive parametric form.
By exploiting K’s eigendecomposition, we were able to develop a novel EM learning
algorithm. On a product recommendation task, we have shown EM to be faster
and more robust than the naive approach of maximizing likelihood by projected
gradient. In other applications for which modeling negative interactions between

items is important, we anticipate that EM will similarly have a significant advantage.

139



feeding ‘ : : 7.4
gear 6.0
bedding 4.0
bath [ 2.2

apparel

diaper
media
furniture
health
toys
safety
carseats

strollers

KA runtime / EM runtime

Figure 6.4: Ratios of KA runtime to EM runtime.

6.7.2 EXPONENTIATED GRADIENT

Besides the EM method developed in the preceding sections, another learning
method that improves on the projected gradient ascent of KA is exponentiated gra-
dient. Tsuda, Ritsch, and Warmuth (2005) provide several exponeniated gradient
update schemes for positive semi-definite matrices, and we briefly discuss one of
these here.

One way of viewing the updates of the gradient ascent method is as a solution to
the following minimization problem:

K' = argmin || K’ — K||% —nL(K'). (6.65)
e
This minimization balances the goal of maximizing likelihood with the goal of min-
imizing change in K, where the learning rate n quantifies the relative importances of
these two goals. Taking the derivative, setting it equal to zero, and solving for K':
_ n OL(K")

K' =K . .
+ 5ok (6.66)
This is identical to the gradient update once we make the approximation 257 ~

9LK) | Tsuda et al. (2005) develop an exponentiated gradient update rule by replac-
ing the Frobenius norm in Equation (6.65) with a different measure of similarity
between K and K’. Specifically, Tsuda et al. (2005) use the von Neumann diver-
gence:

tr(K'log K' — K'logK — K' + K). (6.67)

140



L(K')

The solution to the resulting optimization problem (again approximating %=~ with
OL(K)

0K

) is:
IL(K)
0K

Notice that the matrix exponential here implies that K’ will have non-negative eigen-

K'=exp |logK + 17

(6.68)

values. Thus, the only projection necessary to enforce the DPP kernel learning con-
straints is to cap the eigenvalues at 1. This eliminates the type of problems we ob-
served with the naive projected gradient method, KA, where too many eigenvalues
were truncated at zero. If we apply this exponentiated update rule to the problem
of learning DPP kernels for the baby registry data, its performance is nearly iden-
tical to that of EM: with Wishart initialization the relative gain in log-likelihood
of EM over exponentiated gradient averages 0.57%, and for the moments-matching

initialization it averages —0.18%.

141



Conclusion

In this thesis we have developed a set of approximate inference tools for determinan-
tal point processes (DPPs), and demonstrated their efficacy on a variety of real-world
applications.

In Chapter 4, we brought standard dimensionality reduction techniques to bear
on the problem of DPP inference, in the setting where both the number of items
in the ground set and the number of features of those items are large. We estab-
lished that, when employing random projections to reduce the number of features
of a DPP, the variational distance between the original DPP and the projected one
decays exponentially as the number of projection dimensions increases. This granted
theoretical justification to the use of random projections with DPPs, and motivated
our use of them in combination with structured DPPs. The resulting partnership
allowed us to tackle a novel summarization task for large document corpora.

In Chapter 5, we considered the NP-hard problem of finding the DPP MAP
configuration. Observing that det is a log-submodular function, we leveraged exist-
ing submodular maximization algorithms. Introducing a modification to the stan-
dard submodular multilinear extension, we obtained an alternative extension whose

value and gradient can be computed efficiently for det, while maintaining the par-

142



tial concavity necessary for proving a -approximation guarantee for the associated
algorithm. We verified the practicality of the algorithm, and illustrated its ability to
accommodate interesting constraints on the selected subset, by testing on a political
candidate comparison task.

In Chapter 6, we made a foray into the domain of DPP learning. To address the
problem of learning the full DPP kernel, likely an NP-hard task, we proposed a novel
algorithm for locating local optima of the likelihood objective. More precisely, by
decomposing the likelihood objective into eigenvalue and eigenvector components
and then lower-bounding it using Jensen’s inequality, we derived an expectation-
maximization (EM) scheme. Our experiments on a practical product recommen-
dation task indicate that this EM algorithm is more robust than a naive projected

gradient approach.

7.1 FUTURE WORK

Given the relatively recent appearance of DPPs on the machine learning front, there
remain substantial opportunities for innovation. As illustrated in this thesis, some
core DPP inference tasks are NP-hard, and other tasks’ complexities are cubic in
the size of the ground set, which is impractical for the large datasets that are of
interest to the machine learning community. Thus, many of the opportunities for
innovation lie in the realm of approximate inference. We briefly touch here on some
such possibilities for future work.

In the area of dimensionality reduction, there are numerous more sophisticated
techniques than random projections that one could try to adapt for use with DPPs.
While the computational complexity of the vanilla versions of most methods, such
as principal component analysis, is too high for use in settings with a large number of
items and features, finding ways to approximate these techniques for use with DPPs
would be of interest. For instance, the dual and structured versions of the Nystom
approximation outlined in Sections 4.6.2 and 4.6.2 might be a good starting point
for future work.

For the problem of finding the DPP MAP set, the question of how hard it is
to approximate the MAP under complex constraint sets (matroids, knapsacks, etc.)

remains open. While the submodular maximization literature gives a starting point

143



for this problem, there are likely algorithms that do not generalize to all submodular
functions, yet work well with DPPs. Exploiting those inference operations that can
be performed efficiently for DPPs, such as normalization and marginalization, is a
good starting point for developing such algorithms.

In terms of learning DPPs, there are as yet a vast number of unexplored options:
likelihood maximization via other local search techniques such as the difference of
convex functions method, entropy maximization subject to moment-matching con-
straints, incorporation of alternative forms of labeled data, and learning in an online
setting, to name a few.

Beyond dimensionality reduction and the MAP and learning problems, there are
several other prominent avenues open for inquiry. For instance, there is the question
of how to do structured DPP inference on loopy graphs. Additionally, there is the
question of how to modify DPP inference algorithms when DPPs are combined with
other data models, such as graphical models. As we seek to apply DPPs to more and

b .
more complex tasks, such questions become increasingly important

144



Bibliography

University of California at Irvine Machine Learning Repository. http://archive.ics.uci.edu/ml/.

[Cited on page 79.]

D. Achlioptas. Database-Friendly Random Projections: Johnson-Lindenstrauss with Binary Coins.
Journal of Computer and System Sciences, 2002. [Cited on pages 69 and 71.]

R. Affandi, A. Kulesza, and E. Fox. Markov Determinantal Point Processes. In Conference on Uncer-

tainty in Artificial Intelligence (UAL), 2012. [Cited on pages 44 and 45.]

R. Affandi, E. Fox, and B. Taskar. Approximate Inference in Continuous Determinantal Point Pro-
cesses. In Neural Information Processing Systems (NIPS), 2013a. [Cited on pages 46, 47, and 79.]

R. Affandi, A. Kulesza, E. Fox, and B. Taskar. Nystrom Approximation for Large-Scale Determinantal
Processes. In Conference on Artificial Intelligence and Statistics (AlStats), 2013b. [Cited on pages 4,
72,73,76,77,78,79, 80, 81, and 82.]

R. Affandi, E. Fox, R. Adams, and B. Taskar. Learning the Parameters of Determinantal Point Process
Kernels. In International Conference on Machine Learning (ICML), 2014. [Cited on pages 113,
117,121, and 122.]

A. Ageev and M. Sviridenko. Pipage Rounding: A New Method of Constructing Algorithms with
Proven Performance Guarantee. Journal of Combinatorial Optimization, 8(3), 2004. [Cited on
page 105.]

A. Ahmed and E. Xing. Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering
Birth/Death and Evolution of Topics in Text Stream. In Conference on Uncertainty in Artificial
Intelligence (UAIL), 2010. [Cited on page 58.]

145


http://archive.ics.uci.edu/ml/
http://users.soe.ucsc.edu/~optas/papers/jl.pdf
http://arxiv.org/pdf/1210.4850v1.pdf
http://arxiv.org/pdf/1311.2971v1.pdf
http://arxiv.org/pdf/1311.2971v1.pdf
http://web.eecs.umich.edu/~kulesza/pubs/nystrom_aistats13.pdf
http://web.eecs.umich.edu/~kulesza/pubs/nystrom_aistats13.pdf
http://arxiv.org/pdf/1402.4862v1.pdf
http://arxiv.org/pdf/1402.4862v1.pdf
http://www.research.ibm.com/people/s/sviri/papers/bigpapfin.ps
http://www.research.ibm.com/people/s/sviri/papers/bigpapfin.ps
http://arxiv.org/pdf/1203.3463.pdf
http://arxiv.org/pdf/1203.3463.pdf

N. Ailon and B. Chazelle. The Fast Johnson-Lindenstrauss Transform and Approximate Nearest
Neighbors. SIAM Journal on Computing (SICOMP), 2009. [Cited on page 71.]

J. Allan, R. Gupta, and V. Khandelwal. Temporal Summaries of New Topics. In Conference of the
Special Interest Group on Information Retrieval (SIGIR), 2001. [Cited on page 58.]

E Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Technical
Report HAL 00645271-v2, Institut national de recherche en informatique et en automatique
(INRIA), 2013. [Cited on page 86.]

E Baker and M. Harwell. Computing Elementary Symmetric Functions and Their Derivatives: A
Didactic. Applied Psychological Measurement, 20:169-192, 1996. [Cited on pages 40 and 129.]

D. Bertsekas. Nonlinear Programming. 1999. ISBN 9781886529144. [Cited on page 100.]

D. Blei and J. Lafferty. Dynamic Topic Models. In International Conference on Machine Learning
(ICML), 2006. [Cited on pages 58, 64, and 65.]

A. Borodin and E. Rains. Eynard-Mehta Theorem, Schur Process, and Their Pfathan Analogs. Journal
of Statistical Physics, 121:291-317, 2005. [Cited on page 8.]

N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A Tight Linear Time (1/2)-Approximation
for Unconstrained Submodular Maximization. In Foundations of Computer Science (FOCS), 2012.
[Cited on pages 85, 92, 93, and 108.]

N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. Submodular Maximization with Cardinality
Constraints. In Symposium on Discrete Algorithms (SODA), 2014. [Cited on page 93.]

J. Bunch and J. Hopcroft. Triangular Factorization and Inversion by Fast Matrix Multiplication.
Mathematics of Computation, 28(125):231-236, 1974. [Cited on pages 16, 17, and 18.]

G. Calinescu, C. Chekuri, M. P4l, and ]. Vondrdk. Maximizing a Submodular Set Function Subject
to a Matroid Constraint. In Conference on Integer Programming and Combinatorial Optimization
(IPCO), 2007. [Cited on page 97.]

G. Calinescu, C. Chekuri, M. P4l, and J. Vondrdk. Maximizing a Monotone Submodular Function
Subject to a Matroid Constraint. SIAM Journal on Computing (SICOMP), 40:1740-1766, 2011.
[Cited on page 105.]

A. Civril and M. Magdon-Ismail. On Selecting a Maximum Volume Sub-Matrix of a Matrix and
Related Problems. 7heoretical Computer Science, 410(47-49):4801-4811, 2009. [Cited on pages
28 and 84.]

146


https://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf
https://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf
http://ciir-publications.cs.umass.edu/pdf/IR-226.pdf
http://hal.archives-ouvertes.fr/docs/00/87/06/09/PDF/submodular_fot_revised_hal.pdf
http://apm.sagepub.com/content/20/2/169.full.pdf
http://apm.sagepub.com/content/20/2/169.full.pdf
http://books.google.com/books/about/Nonlinear_Programming.html?id=QeweAQAAIAAJ
http://www.cs.princeton.edu/~blei/papers/BleiLafferty2006a.pdf
http://arxiv.org/pdf/math-ph/0409059.pdf
http://research.microsoft.com/en-us/um/people/roysch/Papers/USM-BFNS12.pdf
http://research.microsoft.com/en-us/um/people/roysch/Papers/USM-BFNS12.pdf
http://research.microsoft.com/en-us/um/people/roysch/Papers/SMC-BFNS14.pdf
http://research.microsoft.com/en-us/um/people/roysch/Papers/SMC-BFNS14.pdf
http://www.ams.org/journals/mcom/1974-28-125/S0025-5718-1974-0331751-8/S0025-5718-1974-0331751-8.pdf
http://www.cs.uiuc.edu/~chekuri/papers/submod_max.pdf
http://www.cs.uiuc.edu/~chekuri/papers/submod_max.pdf
http://www.cs.uiuc.edu/~chekuri/papers/submod_max_journal.pdf
http://www.cs.uiuc.edu/~chekuri/papers/submod_max_journal.pdf
http://www.cs.rpi.edu/~magdon/ps/journal/MaxVolTCS.pdf
http://www.cs.rpi.edu/~magdon/ps/journal/MaxVolTCS.pdf

C. Chekuri, J. Vondrik, and R. Zenklusen. Submodular Function Maximization via the Multilin-
ear Relaxation and Contention Resolution Schemes. In Symposium on the Theory of Computing

(§TOC), 2011. [Cited on pages 90, 94, 95, 97, 100, 101, 102, 103, 104, and 105.]

H. Chieu and Y. Lee. Query Based Event Extraction along a Timeline. In Conference of the Special
Interest Group on Information Retrieval (SIGIR), 2004. [Cited on page 59.]

A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix Approximation and Projective
Clustering via Volume Sampling. 7heory of Computing, 2:225-247, 2006. [Cited on page 77.]

S. Dobzinski and J. Vondrak. From Query Complexity to Computational Complexity. In Symposium
on the Theory of Computing (STOC), 2012. [Cited on page 92.]

P. Drineas and M. Mahoney. On the Nystrom Method for Approximating a Gram Matrix for Im-
proved Kernel-Based Learning. Journal of Machine Learning Research (JMLR), 6:2153-2175, 2005.
[Cited on page 77.]

S. Dughmi, T. Roughgarden, and M. Sundararajan. Revenue Submodularity. In Electronic Commerce,
2009. [Cited on page 3.]

A. Edelman, T. Arias, and S. Smith. The Geometry of Algorithms with Orthogonality Constraints.
SIAM Journal on Matrix Analysis and Applications (SIMAX), 1998. [Cited on page 133.]

E. Elhamifar, G. Sapiro, and R. Vidal. Finding Exemplars from Pairwise Dissimilarities via Simul-
taneous Sparse Recovery. In Neural Information Processing Systems (NIPS), 2012. [Cited on page
4.]

G. Erkan and D. Radev. LexRank: Graph-Based Lexical Centrality as Salience in Text Summariza-
tion. Journal of Artificial Intelligence Research, 22(1):457—479, 2004. [Cited on page 60.]

U. Feige, V. Mirrokni, and J. Vondrdk. Maximizing Non-Monotone Submodular Functions. In
Foundations of Computer Science (FOCS), 2007. [Cited on pages 91 and 92.]

M. Feldman, J. Naor, and R. Schwartz. Nonmonotone Submodular Maximization via a Structural
Continuous Greedy Algorithm. Awutomata, Languages, and Programming, 2011. [Cited on page
95.]

M. Frank and P. Wolfe. An Algorithm for Quadratic Programming. Naval Research Logistics Quarterly,
3(1-2), 1956. [Cited on page 100.]

S. Gharan and J. Vondrék. Submodular Maximization by Simulated Annealing. In Symposium on
Discrete Algorithms (SODA), 2011. [Cited on page 93.]

147


http://arxiv.org/pdf/1105.4593v3.pdf
http://arxiv.org/pdf/1105.4593v3.pdf
http://www.researchgate.net/publication/221301197_Query_based_event_extraction_along_a_timeline/links/0c9605215758c9e2ef000000
http://tocworking.cs.uchicago.edu/articles/v002a012/v002a012.pdf
http://tocworking.cs.uchicago.edu/articles/v002a012/v002a012.pdf
http://theory.stanford.edu/~jvondrak/data/querytocc.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/DrineasM05.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/DrineasM05.pdf
http://theory.stanford.edu/~tim/papers/revsub.pdf
http://web.mit.edu/~wingated/www/introductions/stiefel-mfld.pdf
http://papers.nips.cc/paper/4705-finding-exemplars-from-pairwise-dissimilarities-via-simultaneous-sparse-recovery.pdf
http://papers.nips.cc/paper/4705-finding-exemplars-from-pairwise-dissimilarities-via-simultaneous-sparse-recovery.pdf
http://arxiv.org/pdf/1109.2128.pdf
http://arxiv.org/pdf/1109.2128.pdf
http://www.wisdom.weizmann.ac.il/~feige/mypapers/FeigeMirrokniVondrak.pdf
http://www.cs.technion.ac.il/~schwartz/Publications/FNS-ICALP11.pdf
http://www.cs.technion.ac.il/~schwartz/Publications/FNS-ICALP11.pdf
http://onlinelibrary.wiley.com/doi/10.1002/nav.3800030109/abstract
http://arxiv.org/pdf/1007.1632v1.pdf

J. Gillenwater, A. Kulesza, and B. Taskar. Discovering Diverse and Salient Threads in Document
Collections. In Empirical Methods in Natural Language Processing (EMNLP), 2012a. [Cited on
page 49.]

J. Gillenwater, A. Kulesza, and B. Taskar. Near-Optimal MAP Inference for Determinantal Point
Processes. In Neural Information Processing Systems (NIPS), 2012b. [Cited on page 86.]

J. Gillenwater, A. Kulesza, E. Fox, and B. Taskar. Expectation-Maximization for Learning Determi-
nantal Point Processes. In Neural Information Processing Systems (NIPS), 2014. [Cited on pages 2
and 113.]

M. Goemans and D. Williamson. Improved Approximation Algorithms for Maximum Cut and
Satisfiability Problems Using Semidefinite Programming. Journal of the Association for Computing
Machinery (JACM), 42:1115-1145, 1995. [Cited on page 89.]

D. Graff and Cieri C. English Gigaword, 2009. [Cited on page 61.]

M. GuandS. Eisenstat. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenprob-
lem. SIAM jJournal on Matrix Analysis and Applications (SIMAX), 16(1):172-191, 1995. [Cited
on page 18.]

A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained Nonmonotone Submodular Maxi-
mization: Offline and Secretary Algorithms. In Conference on Web and Internet Economics (WINE),
2010. [Cited on page 93.]

I. Guyon and A. Elisseeff. An Introduction to Variable and Feature Selection. Jjournal of Machine
Learning Research (JMLR), 2003. [Cited on page 4.]

J. Hartline, V. Mirrokni, and M. Sundararajan. Optimal Marketing Strategies over Social Networks.
In World Wide Web Conference (WWW), 2008. [Cited on page 3.]

D. Henrion and J. Malick. Projection Methods for Conic Feasibility Problems. Optimization Methods
and Software, 26(1):23—46, 2011. [Cited on page 124.]

T. Hesterberg, S. Monaghan, D. Moore, A. Clipson, and R. Epstein. Bootstrap Methods and Permu-
tation Tests. 2003. ISBN 9780716759980. [Cited on page 68.]

J. Hough, M. Krishnapur, Y. Peres, and B. Virdg. Determinantal Processes and Independence. Prob-
ability Surveys, 3, 2006. [Cited on pages 23 and 126.]

A. James. Distributions of Matrix Variates and Latent Roots Derived from Normal Samples. Annals

of Mathematical Statistics, 35(2):475-501, 1964. [Cited on pages 107 and 134.]

W. Johnson and J. Lindenstrauss. Extensions of Lipschitz Mappings into a Hilbert Space. Contem-
porary Mathematics, 26:189-2006, 1984. [Cited on page 49.]

148


http://www.seas.upenn.edu/~jengi/emnlp2012.pdf
http://www.seas.upenn.edu/~jengi/emnlp2012.pdf
http://www.seas.upenn.edu/~jengi/nips2012.pdf
http://www.seas.upenn.edu/~jengi/nips2012.pdf
http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf
http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf
https://catalog.ldc.upenn.edu/LDC2003T05
http://epubs.siam.org/doi/abs/10.1137/S0895479892241287
http://epubs.siam.org/doi/abs/10.1137/S0895479892241287
http://arxiv.org/pdf/1003.1517v2.pdf
http://arxiv.org/pdf/1003.1517v2.pdf
http://jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
http://www.wwwconference.org/www2008/papers/pdf/p189-hartline.pdf
http://www.optimization-online.org/DB_FILE/2011/03/2961.pdf
http://statweb.stanford.edu/~tibs/stat315a/Supplements/bootstrap.pdf
http://statweb.stanford.edu/~tibs/stat315a/Supplements/bootstrap.pdf
http://arxiv.org/pdf/math/0503110v2.pdf
http://www.jstor.org/stable/2238504
http://www.researchgate.net/publication/235008656_Extensions_of_Lipschitz_mappings_into_a_Hilbert_space

B. Kang. Fast Determinantal Point Process Sampling with Application to Clustering. In Neural
Information Processing Systems (NIPS), 2013. [Cited on pages 4, 72, 73, 74, and 75.]

G. Kim, E. Xing, L. Fei-Fei, and T. Kanade. Distributed Cosegmentation via Submodular Op-
timization on Anisotropic Diftusion. In International Conference on Computer Vision (ICCV),
2011. [Cited on page 3.]

C. Ko, J. Lee, and M. Queyranne. An Exact Algorithm for Maximum Entropy Sampling. Operations
Research, 43(4):684—691, 1995. [Cited on pages 27, 28, and 84.]

A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian Processes:
Theory, Efficient Algorithms, and Empirical Studies. Journal of Machine Learning Research (JMLR),
9:235-284, 2008. [Cited on page 3.]

A. Kulesza. Learning with Determinantal Point Processes. PhD thesis, University of Pennsylvania,
2012. [Cited on pages 13, 16, 17, 18,19, 22, 23, 28, 30, 31, 32, 34, 35, 36, 40, 41, 44, 46, 83,
85, and 120.]

A. Kulesza and B. Taskar. Structured Determinantal Point Processes. In Neural Information Processing

Systems (NIPS), 2010. [Cited on pages 4, 43, and 52.]

A. Kulesza and B. Taskar. k-DPPs: Fixed-Size Determinantal Point Processes. In International Con-
ference on Machine Learning (ICML), 2011a. [Cited on pages 3, 40, 52, 113, 117, 118, 119,
and 122.]

A. Kulesza and B. Taskar. Learning Determinantal Point Processes. In Conference on Uncertainty in

Artificial Intelligence (UAIL), 2011b. [Cited on pages 45, 113, 117, and 118.]

A. Kulesza and B. Taskar. Determinantal Point Processes for Machine Learning. Foundations and
Trends in Machine Learning, 5(2-3), 2012. [Cited on page 2.]

G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. Jordan. Learning the Kernel Matrix with
Semidefinite Programming. Journal of Machine Learning Research (JMLR), 5:27-72, 2004. [Cited
on page 114.]

J. Lasserre. Moments, Positive Polynomials, and Their Applications. 2009. ISBN 9781848164468.
[Cited on page 116.]

S. Lauritzen and D. Spiegelhalter. Local Computations with Probabilities on Graphical Structures
and Their Application to Expert Systems. Journal of the Royal Statistical Society, page 157-224,
1988. [Cited on page 43.]

E Lavancier, J. Moller, and E. Rubak. Statistical Aspects of Determinantal Point Processes. Technical
Report R-2012-02, Department of Mathematical Sciences, Aalborg University, 2012. [Cited on

page 121.]

149


http://papers.nips.cc/paper/5008-fast-determinantal-point-process-sampling-with-application-to-clustering.pdf
http://www.cs.cmu.edu/~gunhee/publish/iccv11_coseg.pdf
http://www.cs.cmu.edu/~gunhee/publish/iccv11_coseg.pdf
http://www.jstor.org/stable/171694
http://jmlr.org/papers/volume9/krause08a/krause08a.pdf
http://jmlr.org/papers/volume9/krause08a/krause08a.pdf
http://www.eecs.umich.edu/~kulesza/pubs/thesis.pdf
http://www.eecs.umich.edu/~kulesza/pubs/sdpps_nips10.pdf
http://www.eecs.umich.edu/~kulesza/pubs/kdpps_icml11.pdf
http://www.eecs.umich.edu/~kulesza/pubs/dpplearn_uai11.pdf
http://arxiv.org/pdf/1207.6083v4.pdf
http://jmlr.org/papers/volume5/lanckriet04a/lanckriet04a.pdf
http://jmlr.org/papers/volume5/lanckriet04a/lanckriet04a.pdf
http://books.google.com/books?id=VY6imTsdIrEC
http://www.eecis.udel.edu/~shatkay/Course/papers/Lauritzen1988.pdf
http://www.eecis.udel.edu/~shatkay/Course/papers/Lauritzen1988.pdf
http://vbn.aau.dk/files/69794377/R_2012_02.pdf

H. Lee, E. Modiano, and K. Lee. Diverse Routing in Networks With Probabilistic Failures. /EEE
Transactions on Networking, 18(6), 2010. [Cited on page 4.]

J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the Dynamics of the News Cycle.
In Conference on Knowledge Discovery and Data Mining (KDD), 2009. [Cited on page 58.]

D. Levin, Y. Peres, and E. Wilmer. Markov Chains and Mixing Times. 2008. ISBN 9780821886274.
[Cited on page 75.]

E. Levitin and B. Polyak. Constrained Minimization Methods. USSR Computational Mathematics
and Mathematical Physics, 6(5):1-50, 1966. [Cited on page 124.]

M. Li, J. Kwok, and B. Lu. Making Large-Scale Nystrom Approximation Possible. In International
Conference on Machine Learning (ICML), 2010. [Cited on page 81.]

Z.Liand]. Eisner. First- and Second-Order Expectation Semirings with Applications to Minimum-
Risk Training on Translation Forests. In Empirical Methods in Natural Language Processing
(EMNLP), 2009. [Cited on page 44.]

C. Lin. ROUGE: A package for automatic evaluation of summaries. In Workshop on Text Summa-
rization (WAS), 2004. [Cited on page 68.]

H. Lin and J. Bilmes. Learning Mixtures of Submodular Shells with Application to Document
Summarization. In Conference on Uncertainty in Artificial Intelligence (UAI), 2012. [Cited on page
2.]

R. Lyons. Determinantal Probability Measures. Publications Mathématiques de I'lnstitut des Hautes
Etudes Scientifiques, 98(1):167-212, 2003. [Cited on pages 30 and 116.]

A. Magen and A. Zouzias. Near Optimal Dimensionality Reductions that Preserve Volumes. Approx-
imation, Randomization and Combinatorial Optimization: Algorithms and Techniques (APPROX /
RANDOM), 5171:523-534, 2008. [Cited on pages 49 and 72.]

A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the Construction of Internet
Portals with Machine Learning. Information Retrieval Journal, 3:127-163, 2000. [Cited on page
61.]

K. McKinnon. Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point. SIAM
Journal on Optimization (SIOPT), 9(1):148-158, 1998. [Cited on page 121.]

D. McSherry. Diversity-Conscious Retrieval. In Advances in Case-Based Reasoning, 2002. [Cited on
page 2.]

150


https://wangxliang.wikispaces.com/file/view/Diverse+Routing+in+Networks+with+Probabilistic+Failures.pdf
http://www.cs.cornell.edu/home/kleinber/kdd09-quotes.pdf
http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
http://www.sciencedirect.com/science/article/pii/0041555366901145
http://www.icml2010.org/papers/242.pdf
http://www.aclweb.org/anthology/D09-1005
http://www.aclweb.org/anthology/D09-1005
http://research.microsoft.com/en-us/people/cyl/was2004.pdf
http://arxiv.org/pdf/1210.4871v1.pdf
http://arxiv.org/pdf/1210.4871v1.pdf
http://arxiv.org/pdf/math/0204325v4.pdf
http://www.cs.toronto.edu/~zouzias/downloads/papers/jl-volume.pdf
http://www.cs.cmu.edu/~knigam/papers/cora-jnl.pdf
http://www.cs.cmu.edu/~knigam/papers/cora-jnl.pdf
http://www.maths.ed.ac.uk/mckinnon/MS/96-006/paper.ps.gz
http://dx.doi.org/10.1007/3-540-46119-1_17

W. Mei and C. Zhai. Discovering Evolutionary Theme Patterns From Text: An Exploration of
Temporal Text Mining. In Conference on Knowledge Discovery and Data Mining (KDD), 2005.
[Cited on page 58.]

C. Meyer. Matrix Analysis and Applied Linear Algebra. 2000. ISBN 9780898714548. [Cited on page
14.]

R. Neal and G. Hinton. A New View of the EM Algorithm that Justifies Incremental, Sparse and
Other Variants. Learning in Graphical Models, 1998. [Cited on page 126.]

G. Nembhauser, L. Wolsey, and M. Fisher. An Analysis of Approximations for Maximizing Sub-
modular Set Functions 1. Mathematical Programming, 14(1), 1978. [Cited on pages 28, 85, 90,
and 91.]

J. Nocedal and S. Wright. Numerical Optimization. 2006. ISBN 9780387303031. [Cited on page
99.]

K. Petersen and M. Pedersen. The Matrix Cookbook. Technical report, Technical University of
Denmark, 2012. [Cited on pages 99, 124, and 130.]

R. Reichart and A. Korhonen. Improved Lexical Acquisition through DPP-based Verb Clustering.
In Conference of the Association for Computational Linguistics (ACL), 2013. [Cited on page 4.]

J. Rising, A. Kulesza, and B. Taskar. An Efficient Algorithm for the Symmetric Principal Minor
Assignment Problem. Linear Algebra and its Applications, 2014. [Cited on page 115.]

A. Shah and Z. Ghahramani. Determinantal Clustering Process — A Nonparametric Bayesian Ap-
proach to Kernel Based Semi-Supervised Clustering. In Conference on Uncertainty in Artificial
Intelligence (UAI), 2013. [Cited on page 4.]

D. Shahaf'and C. Guestrin. Connecting the Dots Between News Articles. In Conference on Knowledge
Discovery and Data Mining (KDD), 2010. [Cited on page 59.]

D. Shahaf, C. Guestrin, and E. Horvitz. Trains of Thought: Generating Information Maps. In World
Wide Web Conference (WWW), 2012. [Cited on page 59.]

R. Swan and D. Jensen. TimeMines: Constructing Timelines with Statistical Models of Word Usage.
In Conference on Knowledge Discovery and Data Mining (KDD), 2000. [Cited on page 58.]

K. Tsuda, G. Ritsch, and M. Warmuth. Matrix Exponentiated Gradient Updates for On-line Learn-
ing and Bregman Projection. Journal of Machine Learning Research (JMLR), 6:995-1018, 2005.
[Cited on page 140.]

L. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM Journal on Computing
(SICOMP), 8:410-421, 1979. [Cited on page 31.]

151


http://sifaka.cs.uiuc.edu/czhai/pub/kdd05-ttm.pdf
http://sifaka.cs.uiuc.edu/czhai/pub/kdd05-ttm.pdf
http://books.google.com/books/about/Matrix_Analysis_and_Applied_Linear_Algeb.html?id=m7W2748ynMcC
ftp://ftp.cdf.toronto.edu/dist/radford/emk.pdf
ftp://ftp.cdf.toronto.edu/dist/radford/emk.pdf
http://www.cs.toronto.edu/~eidan/papers/submod-max.pdf
http://www.cs.toronto.edu/~eidan/papers/submod-max.pdf
http://books.google.com/books?id=eNlPAAAAMAAJ
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://ie.technion.ac.il/~roiri/papers/acl2013_clustering_dpp.pdf
http://dx.doi.org/10.1016/j.laa.2014.04.019
http://dx.doi.org/10.1016/j.laa.2014.04.019
http://arxiv.org/pdf/1309.6862v1.pdf
http://arxiv.org/pdf/1309.6862v1.pdf
http://i.stanford.edu/~dshahaf/kdd2010-shahaf-guestrin.pdf
http://i.stanford.edu/~dshahaf/fp0590-shahaf.pdf
https://www.cs.cmu.edu/~dunja/KDDpapers/Swan_TM.pdf
http://jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf
http://jmlr.org/papers/volume6/tsuda05a/tsuda05a.pdf
http://epubs.siam.org/doi/abs/10.1137/0208032

L. Valiantand V. Vazirani. NP is as Easy as Detecting Unique Solutions. Theoretical Computer Science,
47:85-93, 1986. [Cited on page 92.]

J. Vondrak. Optimal Approximation for the Submodular Welfare Problem in the Value Oracle Model.
In Symposium on the Theory of Computing (STOC), 2008. [Cited on page 94.]

J. Vondrak. Symmetry and Approximability of Submodular Maximization Problems. In Foundations
of Computer Science (FOCS), 2009. [Cited on page 94.]

C. Wayne. Multilingual Topic Detection and Tracking: Successful Research Enabled by Corpora
and Evaluation. In Language Resources and Evaluation Conference (LREC), 2000. [Cited on page
58.]

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance Metric Learning with Application to Clustering
with Side-Information. In Neural Information Processing Systems (NIPS), 2002. [Cited on page
114.]

R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y. Zhang. Evolutionary Timeline Summarization:
A Balanced Optimization Framework via Iterative Substitution. In Conference of the Special Interest

Group on Information Retrieval (SIGIR), 2011. [Cited on page 58.]

H. Yanai, K. Takeuchi, and Y. Takane. Projection Matrices, Generalized Inverse Matrices, and Singular
Value Decomposition. 2011. ISBN 9781441998873. [Cited on page 80.]

J. Zou and R. Adams. Priors for Diversity in Generative Latent Variable Models. In Newural Informa-
tion Processing Systems (NIPS), 2013. [Cited on page 47.]

152


http://www.sciencedirect.com/science/article/pii/0304397586901350
http://theory.stanford.edu/~jvondrak/data/submod-value.pdf
http://arxiv.org/pdf/1110.4860v2.pdf
http://lrec.elra.info/proceedings/lrec2000/pdf/168.pdf
http://lrec.elra.info/proceedings/lrec2000/pdf/168.pdf
http://ai.stanford.edu/~ang/papers/nips02-metric.pdf
http://ai.stanford.edu/~ang/papers/nips02-metric.pdf
http://www.cis.pku.edu.cn/faculty/system/zhangyan/papers/SIGIR2011-yanrui.pdf
http://www.cis.pku.edu.cn/faculty/system/zhangyan/papers/SIGIR2011-yanrui.pdf
http://books.google.com/books?id=D3LYNhnfykIC
http://books.google.com/books?id=D3LYNhnfykIC
http://papers.nips.cc/paper/4660-priors-for-diversity-in-generative-latent-variable-models.pdf

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivating subset selection applications
	Expressing set-goodness as a determinant
	Definition of a DPP
	Motivating DPP inference tasks
	Thesis contributions

	DPP Basics
	Geometric interpretation
	Inference
	Normalizing
	Marginalizing
	Conditioning
	Sampling
	MAP estimation
	Likelihood maximization
	Maximizing entropy
	Computing expectations

	Closure
	Dual representation
	Normalizing
	Marginalizing
	Conditioning
	Sampling

	Quality-similarity decomposition

	DPP Variants
	Cardinality-constrained DPPs
	Structured DPPs
	Markov DPPs
	Continuous DPPs

	Dimensionality Reduction
	Random projections
	Threading k-SDPPs
	Toy example: geographical paths
	Threading document collections
	Related work
	Setup
	Academic citation data
	News articles

	Related random projections work
	Related DPP work
	MCMC sampling
	Nyström approximation


	MAP estimation
	Definition of submodularity
	Log-submodularity of det
	Submodular maximization
	Monotone f
	Non-monotone f
	Constrained f

	Polytope constraints
	Softmax extension
	Softmax maximization algorithms
	Softmax approximation bound
	Rounding

	Experiments
	Synthetic data
	Political candidate comparison

	Model combination

	Likelihood maximization
	Alternatives to maximizing likelihood
	Feature representation
	Concave likelihood-based objectives
	Non-concave likelihood-based objectives
	MCMC approach for parametric kernels
	EM approach for unrestricted kernels
	Projected gradient ascent
	Eigendecomposing
	Lower bounding the objective
	E-step
	M-step eigenvalue updates
	M-step eigenvector updates

	Experiments
	Baby registry tests
	Exponentiated gradient


	Conclusion
	Future work


