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We investigate an unsupervised learning
method for dependency parsing that imposes
sparsity biases on the dependency types. We
assume a corpus annotated with POS tags, where
the task is to induce a dependency model from the
tags for corpus sentences. The models we use are
based on the generative dependency model with
valence (DMV) (Klein and Manning, 2004). In
this setting, the type of a dependency is defined
as a pair: tag of the dependent (also known as
the child), and tag of the head (also known as
the parent). Given that POS tags are designed to
convey information about grammatical relations,
it is reasonable to assume only some of the
possible dependency types will be realized for
a given language. For instance, in English it
is ungrammatical for nouns to dominate verbs,
adjectives to dominate adverbs, and determiners
to dominate almost any POS. Thus, realized
dependency types should be a sparse subset of all
possible types.

Previous work in unsupervised grammar induc-
tion has tried to achieve sparsity through priors.
For example, Cohen et al. (2008) experimented
with a Dirichlet prior that encourages a standard
dependency parsing model to limit the number of
dependent types for each head type. Our exper-
iments show a more effective sparsity pattern is
one that limits the total number of unique head-
dependent tag pairs. This kind of sparsity bias
avoids inducing competition between dependent
types for each head type. We can achieve the de-
sired bias with a constraint on model posteriors
during learning, using the posterior regularization
(PR) framework (Graça et al., 2007). Specifically,

to implement PR we augment the maximum like-
lihood objective of the dependency model with a
term that penalizes head-dependent tag distribu-
tions that are too permissive.

To briefly review, the standard optimization
technique for the DMV is the expectation maxi-
mization (EM) algorithm. EM optimizes marginal
likelihood L(θ) = log

∑
Y pθ(X,Y), where X =

{x1, . . . ,xn} denotes the entire unlabeled corpus
and Y = {y1, . . . ,yn} denotes a set of corre-
sponding parses for each sentence. Neal and Hin-
ton (1998) view EM as block coordinate ascent on
a function that lower-bounds L(θ). Starting from
an initial parameter estimate θ0, the algorithm it-
erates two steps:

E : qt+1 = arg min
q

KL(q(Y) ‖ pθt(Y | X)) (1)

M : θt+1 = arg max
θ

Eqt+1 [log pθ(X,Y)] (2)

Note that the E-step just sets qt+1(Y) =
pθt(Y | X), since it is an unconstrained minimiza-
tion of a KL-divergence. The PR method we use
is almost identical to EM, except that it modifies
the E-step by adding a penalty term for grammars
that are too permissive.

To be specific, the exact form the penalty takes
is basically a count of the number of distinct de-
pendency types the grammar allows. It is easiest
to express a count of the number of types by us-
ing edge posteriors—the joint probability p(c, p)
that a child c has parent p—and this is why the
penalty can be most naturally enforced using the
PR framework. For each child tag c, let i range
over an enumeration of all occurrences of c in the



corpus, and let p be another tag. Let the indica-
tor φcpi(X,Y) have value 1 if p is the parent tag
of the ith occurrence of c, and value 0 otherwise.
The number of unique dependency types given a
set of gold parse trees is then:X

cp

max
i
φcpi(X,Y) (3)

which can also be written using mixed norm nota-
tion: ||φcpi(X,Y)||`1/`∞ . Note there is an asym-
metry in this: φcpi = 1 if any occurrence of p is
parent of the ith occurrence of c. We call PR train-
ing with this constraint PR-AS. Instead of count-
ing pairs of a child token and a parent type, we
can alternatively count pairs of a child token and a
parent token by letting p range over all tokens. We
call PR training with this constraint PR-S.

Since we are exploring unsupervised learning,
instead of gold trees with φcpi(X,Y) always 0 or
1, we actually have a distribution over parse trees
and expectations of edges E[φ(X,Y)]. Equa-
tion 3 can thus be re-written:X

cp

max
i

E[φ(X,Y)]. (4)

For computational tractability, the way PR
works is that rather than penalizing the model’s
posteriors directly, it uses an auxiliary distribution
q, and penalizes the marginal log-likelihood of a
model by the KL-divergence of pθ from q, plus
the penalty term with respect to q. For a fixed set
of model parameters θ the full PR E-step is:

min
q

KL(q(Y) ‖ pθ(Y|X)) + σ ||Eq[φ(X,Y)]||`1/`∞
(5)

where σ is the strength of the regularization.
In our experiments, we have compared PR pri-

marily to two other methods: EM and learning
with a discounting (sparsifying) Dirichlet prior
(DD). For the basic DMV, average improvements
over EM across 11 different languages are 1.6%
for DD, 6.0% for PR-S, and 7.5% for PR-AS.
For better comparison with previous work we also
implemented two model extensions, borrowed
from Headden III et al. (2009). On the extended
DMV, DD performs worse, just 1.4% better than
EM, while both PR-S and PR-AS continue to show
substantial average improvements over EM, 6.5%
and 6.3%, respectively.

To give some intuition as to why PR works, we
highlight one common EM error that PR fixes in
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Figure 1: Posterior edge probabilities for an example sen-
tence from the Spanish test corpus. At the top are the gold
dependencies, the middle are EM posteriors, and bottom are
PR posteriors. Green indicates correct dependencies and red
indicates incorrect dependencies. The numbers on the edges
are the values of the posterior probabilities.

many languages—the directionality of the noun-
determiner relation. Figure 1 shows an example
of a Spanish sentence where PR significantly out-
performs EM because of this. The reason PR suc-
ceeds here is that in the corpora sometimes nouns
can appear without determiners but the opposite
situation does not occur. Thus, in order to avoid
paying the cost of assigning a new parent tag to
cover each noun that doesn’t have a determiner,
PR instead reverses the noun-determiner relation.

In summary, we present a new method for unsu-
pervised learning of dependency parsers. In con-
trast to previous approaches that constrain model
parameters, we constrain model posteriors. Our
approach consistently outperforms the standard
EM algorithm and a sparsifying Dirichlet prior.
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