
SIC performance --- SIC does well 
for Wishart and Laplacian kernels, 
but struggles with the cluster 
kernels.  This is because the          
ratio decays slowly with k for 
Wishart and Laplacian, but grows 
dramatically with k for cluster 
kernels.  (See eigenvalue plot.)`

Goal --- Recommend k items from a much larger set of n items.

Training data --- r previously-recommended k-sets:
and resulting user engagement sets:
(e.g., which items a user clicked on, or watched, or read, etc.).

Likelihood objective --- Modeling user behavior as a DPP, maximize 
probability of engaged sets by optimizing parameters     that define L.
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Diversity can be useful for recommender systems, for two main reasons:

● Uncertainty --- search engine query “java” has multiple interpretations

● Exploration --- news feed contents should span topics of user interest

 Sports    Technology        Politics          Business

Probability of a set:

Determinantal Point Processes (DPPs)

DPPs are a means of trading off item quality with diversity.  A DPP over n 
items is parameterized by an n-by-n matrix L whose diagonal captures 
item quality and whose off-diagonal captures item-item similarity.

Example --- Game app recommendation:
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Example:

Training a DPP Recommender System

Generating Recommendations

Standard inference-time objective --- Maximum a posteriori (MAP):

Mis-match --- Training modeled engaged-with items as draws from a DPP, 
not the set of all recommended items.  Hence, this MAP objective really 
represents the probability that a user will engage with every item in S.

More natural goal --- Recommend S that maximizes expected cardinality of 
the induced engagements E; maximum induced cardinality (MIC):

MAP

MIC

Main contribution of this work --- Proposal and analysis of MIC.

MAP Failure Case

Low rank kernels --- If rank(L) < k, then MAP has 
equal value (zero) for all size-k sets.  MIC on the 
other hand differentiates among k-sets.

Example --- Each item is represented by a 
2-dimensional feature vector and data forms 3 
clusters.  MIC selects one item in each cluster, 
while MAP selects 3 items at random.

Properties of Induced Cardinality

● Computable in              time:

● Monotone increasing and fractionally subadditive
● Submodular if L is an M-matrix (all off-diagonal entries are non-positive)
● NP-hard to maximize

Direct Optimization

Series Approximation

Geometric series representation ---

● Define:                                    and
● Then using the Neumann series representation of the matrix inverse:

● The first few terms are a monotone submodular approximation:

Goodness of approximation --- For all sets S of size k:

  Best when smaller eigenvalues of L are close to              .

Kernel matrix types --- Experimented 
with three types of L matrices, each 
with a distinct spectrum: Wishart, 
cluster (n items divided into k Gaussian 
clusters), and graph Laplacian (n-node 
graph, Erdos-Renyi model with edge 
existence parameter p = 0.2).

Small kernel: n = 12
MIC --- Exact max.
GIC --- Greedy algorithm on f.  No 
approximation guarantees in general, 
but performs well in practice.  Best on 
Laplacians (which are M-matrices), and 
achieves more than 99% of maximum 
possible value for other kernels. 

Optimization of Approximations

Kernel size: n = 200.
PIC --- Greedy algorithm on f after projecting L to an M-matrix.
SIC --- Greedy algorithm on the (submodular) series approximation.

Wishart kernels                   Cluster kernels                  Laplacian kernels

PIC performance --- PIC does well when the projection to M-matrix does 
not alter the objective too much; graph Laplacian kernels are already 
M-matrices, so PIC is equivalent to GIC in the third graph.

Runtime --- GIC (and PIC, ignoring 
the initial projection step) are            
while SIC is a factor of k faster.  For 
n = 500 and k = 250, SIC runs about 
18 times faster than GIC.

Conclusion --- Use SIC when speed 
is important, or when approximation 
guarantee is required. 


