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DISTANCE METRIC BASICS

Example distance metric: Hamming

dg(A,B) = |[AAB| = [(A\ B)U(B\ 4)| = [{1,2} U {5,6}| =4
General distance metrics:

Set function f :2¥ — R defines distortion d¢(A, B)

Distortion is a metric if it satisfies 4 properties:
d(A,B) >0
symmetry d(A,B)=d(B,A)
identity of indiscernables d(A,B)=0& A=20B
(A, B) <d(A,C)+d(C,B)

non-negativity

triangle inequality d

SUBMODULAR HAMMING (SH) DISTANCES

Set function f:2¥ = R is:
1 if f(A) >0 whenever A # ()
2 if f(0) =
3. if f(A) < f(B) forallACBCV
4 if f(A)+ f(B)> f(AUB) forallA,BCV
5 if f(A)+ f(B) = f(AUB) + [(AN B)
Any fwith properties 1,2, 3,and 4 is a metric.
Property 5 is needed to make optimization tractable.

For f with all 5 properties, we call df an SH distance.

Main focus of our work: exploring SH distance optimization.

Example SH distance: facility location
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dg (A, B) = dy (A, O) d¢(A,B) > ds(A,C)

C differs from A only in the “trees”,
while B differs from A in both “trees” and “buildings”.

— /(AAB),
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OPTIMIZATION PROBLEMS
Objective: F(A) = > fi(AAB;)

i=1
Cardinality: |A| > k,|A| < k

Other C: knapsack, matroid, cuts, matchings (future work)
B

Unconstrained: C = 2V

SH-min: min F'(A)
AeC

SH-max: F(A)
AeC

Centroid-finding problem: find A similar to the B..
find A distinct from the B..

EXAMPLE APPLICATIONS

Document cIusterlng centrmd flndlng step in k-means

Toy example: cluster has 3 documents—

* Doc 1: Submodularity for Speech Compression
* Doc 2: Summarization via Submodular Mixtures
* Doc 3:Submodularity in Data Selection

After stemming, stop word removal, etc.—

* By = {submodular, speech, compress}
e Bo = {summarize, submodular, mixture}
e B3 = {submodular, data, select}

(random second
word from B,

4~ B2, 0rBs)
e with Hamming: centroid = {submodular, speech}

» with f(A)= > +/|ANnW]|, given word classes W :
Wew

Constrain |A| > 1, find centroid via SH-min—

centroid = {submodular, summarize}
Take-away: SH distances allow incorporation of side-

information that can yield superior centroids.

Diverse k-best: finding k distinct sets

Goal: Summarize a photo collection (V = set of all photos).

Process: Present summary to user. If user rejects, present
new summary that is substantially different. Iterate.
Where comes in: Find k-th summary via—

A = argmax

f(A) + Z f(AAA;)
ACV,|A|=¢

First term: Ensures k-th summary is internally diverse.
Second term: Ensures k-th summary is unlike previous k-1.

SH-MIN AND SH-MAX ALGORITHMS

Note: f(AAB) is submodular in AA B, but not necessarily in A.
Thus, we cannot trivially use standard submodular
optimization algorithms for SH-min and SH-max.

Algorithm 1 UNION-SPLIT

Define f/(A) = fi(A\ B;) + fi(B; \ A)
Define F'(A) = >, f/(A)
Output: STANDARD-SUBMOD-OPT (F")

Algorithm 2 BEST-B

A%Bl
for:=2,...., mdo
Output: A

Alg 1—key insight: AAB = (A\ B) U
and f(B \ A) are submodular in A itself.
Alg 2—main idea: If f;
case), then one of the B; is a reasonable A.

= f; Vi,7 (call this the “homogeneous™

Algorithm 3 MAJOR-MIN

A<+ 0
repeat
c <+ F(A)
Define 5

=V \j3,1T; = AAB,

Setw(j) = 22231 {fi (7 | T;) otherwise
A <~ MODULAR-MIN (w z, C)

until F(A) =c

Output: A

Main idea: Construct F,a modular upper bound for F at the
current solution A, then (exactly) minimize F' to
get a new A. Iterate until convergence.

THEORETICAL RESULTS

n = size of ground set V', m = # of f,,
k¢ = curvature (larger values imply f is close to modular)

Table 1: Hardness for SH-min and SH-max. UC stands for unconstrained, and Card stands for
cardinality-constrained. The entry “open” implies that the problem 1s potentially poly-time solvable.

SH-min SH-max
homogeneous heterogeneous homogeneous | heterogeneous
Open 4/3 3/4 3/4

NG NG
O (mtas) | 2 moetasn) | -1 L—1/e

2 9

Table 2: Approximation guarantees of algorithms for SH-min and SH-max. ’-’ implies that no
guarantee holds for the corresponding pair. BEST-B only works for the homogeneous case, while all
other algorithms work in both cases.

UNION-SPLIT | BEST-B MAJOR-MIN | RAND-SET
UC Card UC Card UC

2 ‘ 2=2/m | menasep :

1/4 | 1/2e : - 1/8

(B\ A)and both f(A \ B)

SH-MIN EXPERIMENT

Synthetic document clustering: In a setting with 1000
“words” and 100 “documents” assighed to 10 “true” clusters,
if each document is a random sampling of 10 words from the

10 word classes Wassociated with its cluster, then k-means
clustering accuracy with kmeans++ initialization is—

Hamming: 57.0% (£6.8), versus SH: 88.5% (+£8.4)

SH-MAX EXPERIMENT

Diverse k-best image collection summarization: Given 14
image collections, each containing 100 photos, we seek k = 15

summaries of size 10 for each. We then use V-ROUGE to
measure summary quality.

Table 4: mV-ROUGE (avg over 14 datasets, 4= std dev).  Table 5: # of wins (out of 14 datasets).

HM SP TP HM | SP | TP
0.38 =0.14 | 0.43 +0.20 | 0.50 =0.26 3 I | 10

HM = Hamming optimized via greedy, SP = SH optimized via greedy, TP = SH optimized via UNION-SPLIT

Summaries of the 6th image collection. HM approach (left) and TP
approach (right). Images in the green rectangle tend to be more redundant
with images from the previous summaries in the HM case than in the TP
case; the HM solution contains many images with a “sky’” theme, while TP
contains more images with other themes. Quality of the individual
summaries also tends to become poorer for the later HM sets; considering
the images in the red rectangles overlaid on the montage, the HM sets
contain many images of tree branches. By contrast, the TP summary quality
remains reasonable even for the last few summaries.




