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SUBMODULAR HAMMING METRICS

DISTANCE METRIC BASICS

Example distance metric: Hamming

non-negativity

symmetry

d(A,B) � 0

d(A,B) = d(B,A)

identity of indiscernables

triangle inequality

d(A,B) = 0 , A = B

d(A,B)  d(A,C) + d(C,B)

General distance metrics:

Distortion is a metric if it satisfies 4 properties:

Set function f : 2V ! R defines distortion df (A,B) = f(A4B).

SUBMODULAR HAMMING (SH) DISTANCES

Set function f : 2V ! R is:

3. monotone if f(A)  f(B) for all A ✓ B ✓ V

with properties 1, 2, 3, and 4 is a metric.fAny

Property 5 is needed to make optimization tractable.

For   with all 5 properties, we call     an SH distance.f

V = {
1 2 3 4 5 6

}
7

A = {
41 3

}
2

B = }
3 4 65

{

dH(A,B) = |A4B| = |(A \B) [ (B \A)| = |{1, 2} [ {5, 6}| = 4

Example SH distance: facility location

f(A) =

P
i2V

max

j2A
sim(i, j)C = }

1 3 75

{
dH(A,B) = dH(A,C) df (A,B) > df (A,C)

C differs from A only in the “trees”,
while B differs from A in both “trees” and “buildings”.

OPTIMIZATION PROBLEMS

EXAMPLE APPLICATIONS

Main focus of our work: exploring SH distance optimization.

Objective: F (A) =
mP
i=1

fi(A4Bi)

Unconstrained:

SH-max:

C = 2V

SH-min:

Cardinality: |A| � k, |A|  k

   Other   : knapsack, matroid, cuts, matchings (future work)C

f(A) > 0 A 6= ;whenever1. positive if

2. normalized if f(;) = 0

f(A) + f(B) � f(A [B) A,B ✓ Vfor all4. subadditive if

f(A) + f(B) � f(A [B) + f(A \B)5. submodular if

min
A2C

F (A)

max

A2C
F (A)

Centroid-finding problem: find A similar to the Bi.
Diversification problem: find A distinct from the Bi.

Document clustering: centroid-finding step in k-means
Toy example: cluster has 3 documents—

• Doc 1: Submodularity for Speech Compression
• Doc 2: Summarization via Submodular Mixtures
• Doc 3: Submodularity in Data Selection

• B1 = {submodular, speech, compress}
• B2 = {summarize, submodular, mixture}
• B3 = {submodular, data, select}

After stemming, stop word removal, etc.—

Constrain |A| > 1, find centroid via SH-min—

• with Hamming: centroid = {submodular, speech}
• with                                   ,  given word classes     :

      centroid = {submodular, summarize}

f(A) =
P

W2W

p
|A \W | W

(random second 
word from B1, 

B2, or B3)

Take-away: SH distances allow incorporation of side-
information that can yield superior centroids.

Diverse k-best: finding k distinct sets 
• Goal: Summarize a photo collection (V = set of all photos). 
• Process: Present summary to user.  If user rejects, present 

new summary that is substantially different.  Iterate.
• Where SH-max comes in: Find k-th summary via—

Ak = argmax

A✓V,|A|=`
f(A) +

k�1P
i=1

f(A4Ai)

• First term: Ensures k-th summary is internally diverse.
• Second term: Ensures k-th summary is unlike previous k-1.

SH-MIN AND SH-MAX ALGORITHMS

THEORETICAL RESULTS

SH-MIN EXPERIMENT

SH-MAX EXPERIMENT
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Algorithm 1 UNION-SPLIT

Define f 0
i(A) = fi(A \Bi) + fi(Bi \A)

Define F 0(A) =
Pm

i=1 f
0
i(A)

Output: STANDARD-SUBMOD-OPT (F 0)

Algorithm 2 BEST-B

A B1

for i = 2, . . . ,m do
if F (Bi) < F (A): A Bi

Output: A

Algorithm 3 MAJOR-MIN

A ;
repeat
c F (A)
Define Sj = V \ j, Ti = A4Bi

Set wF̂ (j) =
mP
i=1

⇢
fi(j | Sj) if j 2 A4Bi

fi(j | Ti) otherwise
A MODULAR-MIN (wF̂ , C)

until F (A) = c
Output: A
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Note:              is submodular in        , but not necessarily in   .f(A4B) A4B A

Thus, we cannot trivially use standard submodular 
optimization algorithms for SH-min and SH-max.

Alg 1—key insight:                                      and both    A4B = (A \B) [ (B \A)

and              are submodular in    itself.A

case), then one of the     is a reasonable   .
Alg 2—main idea: If                   (call this the “homogeneous”

Main idea: Construct   , a modular upper bound for    at the F̂ F
current solution   , then (exactly) minimize    toA F̂
get a new   .  Iterate until convergence.A

Table 1: Hardness for SH-min and SH-max. UC stands for unconstrained, and Card stands for
cardinality-constrained. The entry “open” implies that the problem is potentially poly-time solvable.

SH-min SH-max
homogeneous heterogeneous homogeneous heterogeneous

UC Open 4/3 3/4 3/4

Card ⌦

⇣ p
n

1+(
p
n�1)(1�f )

⌘
⌦

⇣ p
n

1+(
p
n�1)(1�f )

⌘
1� 1/e 1� 1/e

Table 2: Approximation guarantees of algorithms for SH-min and SH-max. ’-’ implies that no
guarantee holds for the corresponding pair. BEST-B only works for the homogeneous case, while all
other algorithms work in both cases.

UNION-SPLIT BEST-B MAJOR-MIN RAND-SET
UC Card UC Card UC

SH-min 2 - 2� 2/m n
1+(n�1)(1�f )

-
SH-max 1/4 1/2e - - 1/8

for all A ✓ B ✓ V ; f is subadditive if f(A) + f(B) � f(A [ B) for all A,B ✓ V ; f is
modular if f(A) + f(B) = f(A [ B) + f(B \ A) for all A,B ✓ V ; and f is submodular
if f(A) + f(B) � f(A [ B) + f(B \ A) for all A,B ✓ V . If we assume that f is positive,
normalized, monotone, and subadditive then df (A,B) is a metric (see Theorem 3.1), but without
useful computational properties. If f is positive, normalized, monotone, and modular, then we recover
the weighted Hamming distance. In this paper, we assume that f is positive, normalized, monotone,
and submodular (and hence also subadditive). These conditions are sufficient to ensure the metricity
of df , but allow for a significant generalization over the weighted Hamming distance. Also, thanks to
the properties of submodularity, this class yields efficient optimization algorithms with guarantees
for practical machine learning problems. In what follows, we will refer to normalized monotone
submodular functions as polymatroid functions; all of our results will be concerned with positive
polymatroids. We note here that despite the restrictions described above, the polymatroid class is in
fact quite broad; it contains a number of natural choices of diversity and coverage functions, such as
set cover, facility location, saturated coverage, and concave-over-modular functions.

Given a positive polymatroid function f , we refer to df (A,B) = f(A4B) as a submodular
Hamming (SH) distance. We study two optimization problems involving these metrics (each fi is a
positive polymatroid, each Bi ✓ V , and C denotes a combinatorial constraint):

SH-min: min

A2C

mX

i=1

fi(A4Bi), and SH-max: max

A2C

mX

i=1

fi(A4Bi). (3)

We will use F as shorthand for the sequence (f1, . . . , fm), B for the sequence (B1, . . . , Bm), and
F (A) for the objective function

Pm
i=1 fi(A4Bi). We will also make a distinction between the

homogeneous case where all fi are the same function, and the more general heterogeneous case
where each fi may be distinct. In terms of constraints, in this paper’s theory we consider only the
unconstrained (C = 2

V ) and the cardinality-constrained (e.g., |A| � k, |A|  k) settings. In general
though, C could express more complex concepts such as knapsack constraints, or that solutions must
be an independent set of a matroid, or a cut (or spanning tree, path, or matching) in a graph.

Intuitively, the SH-min problem can be thought of as a centroid-finding problem; the minimizing A
should be as similar to the Bi’s as possible, since a penalty of fi(A4Bi) is paid for each difference.
Analogously, the SH-max problem can be thought of as a diversification problem; the maximizing A
should be as distinct from all Bi’s as possible, as fi(A4B) is awarded for each difference. Given
modular fi (the weighted Hamming distance case), these optimization problems can be solved exactly
and efficiently for many constraint types. For the more general case of submodular fi, we establish
several hardness results and offer new approximation algorithms, as summarized in Tables 1 and 2.
Our main contribution is to provide (to our knowledge), the first systematic study of the properties of
submodular Hamming (SH) metrics, by showing metricity, describing potential machine learning
applications, and providing optimization algorithms for SH-min and SH-max.

The outline of this paper is as follows. In Section 2, we offer further motivation by describing several
applications of SH-min and SH-max to machine learning. In Section 3, we prove that for a positive
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f(A \B)

f(B \A)

fi = fj 8i, j
Bi A
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n = size of ground set V , m = # of fi,
f = curvature (larger values imply f is close to modular)

Synthetic document clustering: In a setting with 1000 
“words” and 100 “documents” assigned to 10 “true” clusters, 
if each document is a random sampling of 10 words from the 
10 word classes     associated with its cluster, then k-means 

clustering accuracy with kmeans++ initialization is—
W

Diverse k-best image collection summarization: Given 14 
image collections, each containing 100 photos, we seek k = 15 

summaries of size 10 for each.  We then use V-ROUGE to 
measure summary quality.

Table 4: mV-ROUGE (avg over 14 datasets, ± std dev).

HM SP TP
0.38± 0.14 0.43± 0.20 0.50± 0.26

Table 5: # of wins (out of 14 datasets).

HM SP TP
3 1 10

Proof. ¯F (A) is a (non-monotone) submodular function that is within a factor 2 of F (A) (see
Lemma 4.2.1). The bi-directional greedy algorithm [27, Algorithm 2] provides a 1/2-approximation
to non-monotone submodular maximization in the unconstrained setting. Thus, applying it to ¯F yields
a 1/4-approximation for maxA F (A). Similarly, in the cardinality-constrained setting, one can use
the randomized greedy algorithm [28, Algorithm 1], which has a 1/e approximation guarantee.

6 Experiments

To demonstrate the effectiveness of the submodular Hamming metrics proposed here, we apply them
to a metric minimization task (clustering) and a metric maximization task (diverse k-best).

6.1 SH-min application: clustering

We explore the document clustering problem described in Section 2, where the groundset V is all
unigram features and Bi contains the unigrams of document i. We run k-means clustering and each
iteration find the mean for cluster Cj by solving:

µj 2 argmin

A:|A|�`

X

i2Cj

f(A4Bi). (34)

The constraint |A| � ` requires the mean to contain at least ` unigrams, which helps k-means to
create richer and more meaningful cluster centers. We compare using the submodular function
f(Y ) =

P
W2W

p
|Y \W | (SM), to using Hamming distance (HM). The problem of finding µj

above can be solved exactly for HM, since it is a modular function. In the SM case, we apply MAJOR-
MIN (Algorithm 3). As an initial test, we generate synthetic data consisting of 100 “documents”
assigned to 10 “true” clusters. We set the number of “word” features to n = 1000, and partition the
features into 100 word classes (the W in the submodular function). Ten word classes are associated
with each true document cluster, and each document contains one word from each of these word
classes. That is, each word is contained in only one document, but documents in the same true cluster
have words from the same word classes. We set the minimum cluster center size to ` = 100. We use
k-means++ initialization [29] and average over 10 trials. Within the k-means optimization, we enforce
that all clusters are of equal size by assigning a document to the closest center whose current size
is < 10. With this setup, the average accuracy of HM is 28.4% (±2.4), while SM is 69.4% (±10.5).
The HM accuracy is essentially the accuracy of a random assignment of documents to clusters; this
makes sense, as no documents share words, rendering the Hamming distance useless. In real-world
data there would likely be some word overlap though; to better model this, we let each document
contain a random sampling of 10 words from the word clusters associated with its document cluster.
In this case, the average accuracy of HM is 57.0% (±6.8), while SM is 88.5% (±8.4). The results
for SM are even better if randomization is removed from the initialization (we simply choose the next
center to be one with greatest distance from the current centers). In this case, the average accuracy
of HM is 56.7% (±7.1), while SM is 100% (±0.0). This indicates that as long as the starting point
for SM contains one document from each cluster, the SM optimization will recover the true clusters.

Moving beyond synthetic data, we applied the same method to the problem of clustering NIPS papers.
The initial set of documents that we consider consists of all NIPS papers1 from 1987 to 2014. We filter
the words of a given paper by first removing stopwords and any words that don’t appear at least 3 times
in the paper. We further filter by removing words that have small tf-idf value (< 0.001) and words that
occur in only one paper or in more than 10% of papers. We then filter the papers themselves, discarding
any that have fewer than 25 remaining words and for each other paper retaining only its top (by tf-idf
score) 25 words. Each of the 5,522 remaining papers defines a Bi set. Among the Bi there are 12,262
unique words. To get the word clusters W , we first run the WORD2VEC code of [30], which generates
a 100-dimensional real-valued vector of features for each word, and then run k-means clustering with

1Papers were downloaded from http://papers.nips.cc/.
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Summaries of the 6th image collection.  HM approach (left) and TP 
approach (right).  Images in the green rectangle tend to be more redundant 

with images from the previous summaries in the HM case than in the TP 
case; the HM solution contains many images with a “sky” theme, while TP 

contains more images with other themes.  Quality of the individual 
summaries also tends to become poorer for the later HM sets; considering 

the images in the red rectangles overlaid on the montage, the HM sets 
contain many images of tree branches.  By contrast, the TP summary quality 

remains reasonable even for the last few summaries.

HM = Hamming optimized via greedy, SP = SH optimized via greedy, TP = SH optimized via UNION-SPLIT

df

Hamming: 57.0% (±6.8), versus SH: 88.5% (±8.4)


