
Expectation-Maximization
for Learning Determinantal Point Processes

Jennifer Gillenwater
Computer and Information Science

University of Pennsylvania
jengi@cis.upenn.edu

Alex Kulesza
Computer Science and Engineering

University of Michigan
kulesza@umich.edu

Emily Fox
Statistics

University of Washington
ebfox@stat.washington.edu

Ben Taskar
Computer Science and Engineering

University of Washington
taskar@cs.washington.edu

Abstract

A determinantal point process (DPP) is a probabilistic model of set diversity com-
pactly parameterized by a positive semi-definite kernel matrix. To fit a DPP to a
given task, we would like to learn the entries of its kernel matrix by maximizing
the log-likelihood of the available data. However, log-likelihood is non-convex
in the entries of the kernel matrix, and this learning problem is conjectured to be
NP-hard [1]. Thus, previous work has instead focused on more restricted convex
learning settings: learning only a single weight for each row of the kernel matrix
[2], or learning weights for a linear combination of DPPs with fixed kernel ma-
trices [3]. In this work we propose a novel algorithm for learning the full kernel
matrix. By changing the kernel parameterization from matrix entries to eigen-
values and eigenvectors, and then lower-bounding the likelihood in the manner
of expectation-maximization algorithms, we obtain an effective optimization pro-
cedure. We test our method on a real-world product recommendation task, and
achieve relative gains of up to 16.5% in test log-likelihood compared to the naive
approach of maximizing likelihood by projected gradient ascent on the entries of
the kernel matrix.

1 Introduction

Subset selection is a core task in many real-world applications. For example, in product recom-
mendation we typically want to choose a small set of products from a large collection; many other
examples of subset selection tasks turn up in domains like document summarization [4, 5], sensor
placement [6, 7], image search [3, 8], and auction revenue maximization [9], to name a few. In
these applications, a good subset is often one whose individual items are all high-quality, but also all
distinct. For instance, recommended products should be popular, but they should also be diverse to
increase the chance that a user finds at least one of them interesting. Determinantal point processes
(DPPs) offer one way to model this tradeoff; a DPP defines a distribution over all possible subsets
of a ground set, and the mass it assigns to any given set is a balanced measure of that set’s quality
and diversity.

Originally discovered as models of fermions [10], DPPs have recently been effectively adapted for a
variety of machine learning tasks [8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 3, 20]. They offer attractive
computational properties, including exact and efficient normalization, marginalization, conditioning,
and sampling [21]. These properties arise in part from the fact that a DPP can be compactly param-
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eterized by an N × N positive semi-definite matrix L. Unfortunately, though, learning L from
example subsets by maximizing likelihood is conjectured to be NP-hard [1, Conjecture 4.1]. While
gradient ascent can be applied in an attempt to approximately optimize the likelihood objective, we
show later that it requires a projection step that often produces degenerate results.

For this reason, in most previous work only partial learning of L has been attempted. [2] showed that
the problem of learning a scalar weight for each row of L is a convex optimization problem. This
amounts to learning what makes an item high-quality, but does not address the issue of what makes
two items similar. [3] explored a different direction, learning weights for a linear combination of
DPPs with fixed Ls. This works well in a limited setting, but requires storing a potentially large set
of kernel matrices, and the final distribution is no longer a DPP, which means that many attractive
computational properties are lost. [8] proposed as an alternative that one first assume L takes on a
particular parametric form, and then sample from the posterior distribution over kernel parameters
using Bayesian methods. This overcomes some of the disadvantages of [3]’s L-ensemble method,
but does not allow for learning an unconstrained, non-parametric L.

The learning method we propose in this paper differs from those of prior work in that it does not
assume fixed values or restrictive parameterizations forL, and exploits the eigendecomposition ofL.
Many properties of a DPP can be simply characterized in terms of the eigenvalues and eigenvectors
of L, and working with this decomposition allows us to develop an expectation-maximization (EM)
style optimization algorithm. This algorithm negates the need for the problematic projection step that
is required for naive gradient ascent to maintain positive semi-definiteness of L. As the experiments
show, a projection step can sometimes lead to learning a nearly diagonal L, which fails to model
the negative interactions between items. These interactions are vital, as they lead to the diversity-
seeking nature of a DPP. The proposed EM algorithm overcomes this failing, making it more robust
to initialization and dataset changes. It is also asymptotically faster than gradient ascent.

2 Background

Formally, a DPP P on a ground set of items Y = {1, . . . , N} is a probability measure on 2Y , the set
of all subsets of Y . For every Y ⊆ Y we have P(Y ) ∝ det(LY ), where L is a positive semi-definite
(PSD) matrix. The subscript LY ≡ [Lij ]i,j∈Y denotes the restriction of L to the entries indexed by
elements of Y , and we have det(L∅) ≡ 1. Notice that the restriction to PSD matrices ensures that
all principal minors of L are non-negative, so that det(LY ) ≥ 0 as required for a proper probability
distribution. The normalization constant for the distribution can be computed explicitly thanks to
the fact that

∑
Y det(LY ) = det(L + I), where I is the N × N identity matrix. Intuitively, we

can think of a diagonal entry Lii as capturing the quality of item i, while an off-diagonal entry Lij
measures the similarity between items i and j.

An alternative representation of a DPP is given by the marginal kernel: K = L(L + I)−1. The
L-K relationship can also be written in terms of their eigendecompositons. L and K share the same
eigenvectors v, and an eigenvalue λi of K corresponds to an eigenvalue λi/(1− λi) of L:

K =

N∑
j=1

λjvjv
>
j ⇔ L =

N∑
j=1

λj
1− λj

vjv
>
j . (1)

Clearly, if L if PSD then K is as well, and the above equations also imply that the eigenvalues of K
are further restricted to be ≤ 1. K is called the marginal kernel because, for any set Y ∼ P and for
every A ⊆ Y:

P(A ⊆ Y ) = det(KA) . (2)

We can also write the exact (non-marginal, normalized) probability of a set Y ∼ P in terms of K:

P(Y ) =
det(LY )

det(L+ I)
= |det(K − IY )| , (3)

where IY is the identity matrix with entry (i, i) zeroed for items i ∈ Y [1, Equation 3.69]. In what
follows we use the K-based formula for P(Y ) and learn the marginal kernel K. This is equivalent
to learning L, as Equation (1) can be applied to convert from K to L.
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3 Learning algorithms

In our learning setting the input consists of n example subsets, {Y1, . . . , Yn}, where Yi ⊆
{1, . . . , N} for all i. Our goal is to maximize the likelihood of these example sets. We first de-
scribe in Section 3.1 a naive optimization procedure: projected gradient ascent on the entries of the
marginal matrix K, which will serve as a baseline in our experiments. We then develop an EM
method: Section 3.2 changes variables from kernel entries to eigenvalues and eigenvectors (intro-
ducing a hidden variable in the process), Section 3.3 applies Jensen’s inequality to lower-bound the
objective, and Sections 3.4 and 3.5 outline a coordinate ascent procedure on this lower bound.

3.1 Projected gradient ascent

The log-likelihood maximization problem, based on Equation (3), is:

max
K

n∑
i=1

log
(
|det(K − IY i

)|
)

s.t. K � 0, I −K � 0 (4)

where the first constraint ensures that K is PSD and the second puts an upper limit of 1 on its
eigenvalues. Let L(K) represent this log-likelihood objective. Its partial derivative with respect to
K is easy to compute by applying a standard matrix derivative rule [22, Equation 57]:

∂L(K)

∂K
=

n∑
i=1

(K − IY i
)−1 . (5)

Thus, projected gradient ascent [23] is a viable, simple optimization technique. Algorithm 1 outlines
this method, which we refer to as K-Ascent (KA). The initial K supplied as input to the algorithm
can be any PSD matrix with eigenvalues ≤ 1. The first part of the projection step, max(λ, 0),
chooses the closest (in Frobenius norm) PSD matrix to Q [24, Equation 1]. The second part,
min(λ, 1), caps the eigenvalues at 1. (Notice that only the eigenvalues have to be projected; K
remains symmetric after the gradient step, so its eigenvectors are already guaranteed to be real.)

Unfortunately, the projection can take us to a poor local optima. To see this, consider the case where
the starting kernel K is a poor fit to the data. In this case, a large initial step size η will probably
be accepted; even though such a step will likely result in the truncation of many eigenvalues at 0,
the resulting matrix will still be an improvement over the poor initial K. However, with many zero
eigenvalues, the new K will be near-diagonal, and, unfortunately, Equation (5) dictates that if the
current K is diagonal, then its gradient is as well. Thus, the KA algorithm cannot easily move
to any highly non-diagonal matrix. It is possible that employing more complex step-size selection
mechanisms could alleviate this problem, but the EM algorithm we develop in the next section will
negate the need for these entirely.

The EM algorithm we develop also has an advantage in terms of asymptotic runtime. The compu-
tational complexity of KA is dominated by the matrix inverses of the L derivative, each of which
requires O(N3) operations, and by the eigendecomposition needed for the projection, also O(N3).
The overall runtime of KA, assuming T1 iterations until convergence and an average of T2 iterations
to find a step size, is O(T1nN

3 + T1T2N
3). As we will show in the following sections, the overall

runtime of the EM algorithm isO(T1nNk
2 +T1T2N

3), which can be substantially better than KA’s
runtime for k � N .

3.2 Eigendecomposing

Eigendecomposition is key to many core DPP algorithms such as sampling and marginalization.
This is because the eigendecomposition provides an alternative view of the DPP as a genera-
tive process, which often leads to more efficient algorithms. Specifically, sampling a set Y can
be broken down into a two-step process, the first of which involves generating a hidden variable
J ⊆ {1, . . . , N} that codes for a particular set of K’s eigenvectors. We review this process below,
then exploit it to develop an EM optimization scheme.

SupposeK = V ΛV > is an eigendecomposition ofK. Let V J denote the submatrix of V containing
only the columns corresponding to the indices in a set J ⊆ {1, . . . , N}. Consider the corresponding
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Algorithm 1 K-Ascent (KA)

Input: K, {Y1, . . . , Yn}, c
repeat
G← ∂L(K)

∂K (Eq. 5)
η ← 1
repeat
Q← K + ηG
Eigendecompose Q into V,λ
λ← min(max(λ, 0), 1)
Q← V diag(λ)V >

η ← η
2

until L(Q) > L(K)
δ ← L(Q)− L(K)
K ← Q

until δ < c
Output: K

Algorithm 2 Expectation-Maximization (EM)

Input: K, {Y1, . . . , Yn}, c
Eigendecompose K into V,λ
repeat

for j = 1, . . . , N do
λ′j ← 1

n

∑
i pK(j ∈ J | Yi) (Eq. 19)

G← ∂F (V,λ′)
∂V (Eq. 20)

η ← 1
repeat
V ′ ← V exp[η

(
V >G−G>V

)
]

η ← η
2

until L(V ′,λ′) > L(V,λ′)
δ ← F (V ′,λ′)− F (V,λ)
λ← λ′, V ← V ′, η ← 2η

until δ < c
Output: K

marginal kernel, with all selected eigenvalues set to 1:

KV J

=
∑
j∈J

vjv
>
j = V J(V J)> . (6)

Any such kernel whose eigenvalues are all 1 is called an elementary DPP. According to [21, Theorem
7], a DPP with marginal kernel K is a mixture of all 2N possible elementary DPPs:

P(Y ) =
∑

J⊆{1,...,N}

PV
J

(Y )
∏
j∈J

λj
∏
j /∈J

(1− λj) , PV
J

(Y ) = 1(|Y | = |J |) det(KV J

Y ) . (7)

This perspective leads to an efficient DPP sampling algorithm, where a set J is first chosen according
to its mixture weight in Equation (7), and then a simple algorithm is used to sample from PV

J

[5,
Algorithm 1]. In this sense, the index set J is an intermediate hidden variable in the process for
generating a sample Y .

We can exploit this hidden variable J to develop an EM algorithm for learning K. Re-writing the
data log-likelihood to make the hidden variable explicit:

L(K) = L(Λ, V ) =

n∑
i=1

log

(∑
J

pK(J, Yi)

)
=

n∑
i=1

log

(∑
J

pK(Yi | J)pK(J)

)
, where (8)

pK(J) =
∏
j∈J

λj
∏
j /∈J

(1− λj) , pK(Yi | J) =1(|Yi| = |J |) det([V J(V J)>]Yi
) . (9)

These equations follow directly from Equations (6) and (7).

3.3 Lower bounding the objective

We now introduce an auxiliary distribution, q(J | Yi), and deploy it with Jensen’s inequality to
lower-bound the likelihood objective. This is a standard technique for developing EM schemes for
dealing with hidden variables [25]. Proceeding in this direction:

L(V,Λ) =

n∑
i=1

log

(∑
J

q(J | Yi)
pK(J, Yi)

q(J | Yi)

)
≥

n∑
i=1

∑
J

q(J | Yi) log

(
pK(J, Yi)

q(J | Yi)

)
≡ F (q, V,Λ) .

(10)
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The function F (q, V,Λ) can be expressed in either of the following two forms:

F (q, V,Λ) =

n∑
i=1

−KL(q(J | Yi) ‖ pK(J | Yi)) + L(V,Λ) (11)

=

n∑
i=1

Eq[log pK(J, Yi)] +H(q) (12)

where H is entropy. Consider optimizing this new objective by coordinate ascent. From Equa-
tion (11) it is clear that, holding V,Λ constant, F is concave in q. This follows from the concavity
of KL divergence. Holding q constant in Equation (12) yields the following function:

F (V,Λ) =

n∑
i=1

∑
J

q(J | Yi) [log pK(J) + log pK(Yi | J)] . (13)

This expression is concave in λj , since log is concave. However, it is not concave in V due to the
non-convex V >V = I constraint. We describe in Section 3.5 one way to handle this.

To summarize, coordinate ascent on F (q, V,Λ) alternates the following “expectation” and “maxi-
mization” steps; the first is concave in q, and the second is concave in the eigenvalues:

E-step: min
q

n∑
i=1

KL(q(J | Yi) ‖ pK(J | Yi)) (14)

M-step: max
V,Λ

n∑
i=1

Eq[log pK(J, Yi)] s.t. 0 ≤ λ ≤ 1, V >V = I (15)

3.4 E-step

The E-step is easily solved by setting q(J | Yi) = pK(J | Yi), which minimizes the KL diver-
gence. Interestingly, we can show that this distribution is itself a conditional DPP, and hence can be
compactly described by an N ×N kernel matrix. Thus, to complete the E-step, we simply need to
construct this kernel. Lemma 1 (see the supplement for a proof) gives an explicit formula. Note that
q’s probability mass is restricted to sets of a particular size k, and hence we call it a k-DPP. A k-DPP
is a variant of DPP that can also be efficiently sampled from and marginalized, via modifications of
the standard DPP algorithms. (See the supplement and [3] for more on k-DPPs.)
Lemma 1. At the completion of the E-step, q(J | Yi) with |Yi| = k is a k-DPP with (non-marginal)
kernel QYi :

QYi = RZYiR, and q(J | Yi) ∝ 1(|Yi| = |J |) det(QYi

J ) , where (16)

U = V >, ZYi = UYi(UYi)>, and R = diag
(√

λ/(1− λ)
)
. (17)

3.5 M-step

The M-step update for the eigenvalues is a closed-form expression with no need for projection.
Taking the derivative of Equation (13) with respect to λj , setting it equal to zero, and solving for λj :

λj =
1

n

n∑
i=1

∑
J:j∈J

q(J | Yi) . (18)

The exponential-sized sum here is impractical, but we can eliminate it. Recall from Lemma 1 that
q(J | Yi) is a k-DPP with kernel QYi . Thus, we can use k-DPP marginalization algorithms to
efficiently compute the sum over J . More concretely, let V̂ represent the eigenvectors of QYi , with
v̂r(j) indicating the jth element of the rth eigenvector. Then the marginals are:∑

J:j∈J
q(J | Yi) = q(j ∈ J | Yi) =

N∑
r=1

v̂r(j)
2 , (19)
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which allows us to compute the eigenvalue updates in time O(nNk2), for k = maxi |Yi|. (See the
supplement for the derivation of Equation (19) and its computational complexity.) Note that this
update is self-normalizing, so explicit enforcement of the 0 ≤ λj ≤ 1 constraint is unnecessary.
There is one small caveat: the QYi matrix will be infinite if any λj is exactly equal to 1 (due to R in
Equation (17)). In practice, we simply tighten the constraint on λ to keep it slightly below 1.

Turning now to the M-step update for the eigenvectors, the derivative of Equation (13) with respect
to V involves an exponential-size sum over J similar to that of the eigenvalue derivative. However,
the terms of the sum in this case depend on V as well as on q(J | Yi), making it hard to simplify.
Yet, for the particular case of the initial gradient, where we have q = p, simplification is possible:

∂F (V,Λ)

∂V
=

n∑
i=1

2BYi(H
Yi)−1VYiR

2 (20)

where HYi is the |Yi| × |Yi| matrix VYiR
2V >Yi

and VYi = (UYi)>. BYi is a N × |Yi| matrix
containing the columns of the N × N identity corresponding to items in Yi; BYi simply serves
to map the gradients with respect to VYi

into the proper positions in V . This formula allows us
to compute the eigenvector derivatives in time O(nNk2), where again k = maxi |Yi|. (See the
supplement for the derivation of Equation (20) and its computational complexity.)

Equation (20) is only valid for the first gradient step, so in practice we do not bother to fully optimize
V in each M-step; we simply take a single gradient step on V . Ideally we would repeatedly evaluate
the M-step objective, Equation (13), with various step sizes to find the optimal one. However,
the M-step objective is intractable to evaluate exactly, as it is an expectation with respect to an
exponential-size distribution. In practice, we solve this issue by performing an E-step for each trial
step size. That is, we update q’s distribution to match the updated V and Λ that define pK , and then
determine if the current step size is good by checking for improvement in the likelihood L.

There is also the issue of enforcing the non-convex constraint V >V = I . We could project V to en-
sure this constraint, but, as previously discussed for eigenvalues, projection steps often lead to poor
local optima. Thankfully, for the particular constraint associated with V , more sophisticated update
techniques exist: the constraint V >V = I corresponds to optimization over a Stiefel manifold, so
the algorithm from [26, Page 326] can be employed. In practice, we simplify this algorithm by
negelecting second-order information (the Hessian) and using the fact that the V in our application
is full-rank. With these simplifications, the following multiplicative update is all that is needed:

V ← V exp

[
η

(
V >

∂L
∂V
−
(
∂L
∂V

)>
V

)]
, (21)

where exp denotes the matrix exponential and η is the step size. Algorithm 2 summarizes the overall
EM method. As previously mentioned, assuming T1 iterations until convergence and an average of
T2 iterations to find a step size, its overall runtime is O(T1nNk

2 + T1T2N
3). The first term in

this complexity comes from the eigenvalue updates, Equation (19), and the eigenvector derivative
computation, Equation (20). The second term comes from repeatedly computing the Stiefel manifold
update of V , Equation (21), during the step size search.

4 Experiments

We test the proposed EM learning method (Algorithm 2) by comparing it to K-Ascent (KA, Algo-
rithm 1)1. Both methods require a starting marginal kernel K̃. Note that neither EM nor KA can
deal well with starting from a kernel with too many zeros. For example, starting from a diagonal
kernel, both gradients, Equations (5) and (20), will be diagonal, resulting in no modeling of diver-
sity. Thus, the two initialization options that we explore have non-trivial off-diagonals. The first of
these options is relatively naive, while the other incorporates statistics from the data.

For the first initialization type, we use a Wishart distribution with N degrees of freedom and an
identity covariance matrix to draw L̃ ∼ WN (N, I). The Wishart distribution is relatively unassum-
ing: in terms of eigenvectors, it spreads its mass uniformly over all unitary matrices [27]. We make

1Code and data for all experiments can be downloaded from https://code.google.com/p/em-for-dpps
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Figure 1: Relative test log-likelihood differences, 100 (EM−KA)
|KA| , using: (a) Wishart initialization in

the full-data setting, and (b) moments-matching initialization in the data-poor setting.

just one simple modification to its output to make it a better fit for practical data: we re-scale the re-
sulting matrix by 1/N so that the corresponding DPP will place a non-trivial amount of probability
mass on small sets. (The Wishart’s mean is NI , so it tends to over-emphasize larger sets unless we
re-scale.) We then convert L̃ to K̃ via Equation (1).

For the second initialization type, we employ a form of moment matching. Letmi andmij represent
the normalized frequencies of single items and pairs of items in the training data:

mi =
1

n

n∑
`=1

1(i ∈ Y`), mij =
1

n

n∑
`=1

1(i ∈ Y` ∧ j ∈ Y`) . (22)

Recalling Equation (2), we attempt to match the first and second order moments by choosing K̃ as:

K̃ii = mi, K̃ij =

√
max

(
K̃iiK̃jj −mij , 0

)
. (23)

To ensure a valid starting kernel, we then project K̃ by clipping its eigenvalues at 0 and 1.

4.1 Baby registry tests

Consider a product recommendation task, where the ground set comprises N products that can be
added to a particular category (e.g., toys or safety) in a baby registry. A very simple recommendation
system might suggest products that are popular with other consumers; however, this does not account
for negative interactions: if a consumer has already chosen a carseat, they most likely will not choose
an additional carseat, no matter how popular it is with other consumers. DPPs are ideal for capturing
such negative interactions. A learned DPP could be used to populate an initial, basic registry, as well
as to provide live updates of product recommendations as a consumer builds their registry.

To test our DPP learning algorithms, we collected a dataset consisting of 29,632 baby registries
from Amazon.com, filtering out those listing fewer than 5 or more than 100 products. Amazon
characterizes each product in a baby registry as belonging to one of 18 categories, such as “toys”
and“safety”. For each registry, we created sub-registries by splitting it according to these categories.
(A registry with 5 toy items and 10 safety items produces two sub-registries.) For each category, we
then filtered down to its top 100 most frequent items, and removed any product that did not occur
in at least 100 sub-registries. We discarded categories with N < 25 or fewer than 2N remaining
(non-empty) sub-registries for training. The resulting 13 categories have an average inventory size
of N = 71 products and an average number of sub-registries n = 8,585. We used 70% of the
data for training and 30% for testing. Note that categories such as “carseats” contain more diverse
items than just their namesake; for instance, “carseats” also contains items such as seat back kick
protectors and rear-facing baby view mirrors. See the supplement for more dataset details and for
quartile numbers for all of the experiments.

Figure 1a shows the relative test log-likelihood differences of EM and KA when starting from a
Wishart initialization. These numbers are the medians from 25 trials (draws from the Wishart). EM
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Figure 2: (a) A high-probability set of size k = 10 selected using an EM model for the “safety”
category. (b) Runtime ratios.

gains an average of 3.7%, but has a much greater advantage for some categories than for others.
Speculating that EM has more of an advantage when the off-diagonal components of K are truly
important—when products exhibit strong negative interactions—we created a matrix M for each
category with the true data marginals from Equation (22) as its entries. We then checked the value
of d = 1

N
||M ||F

||diag(M)||2 . This value correlates well with the relative gains for EM: the 4 categories
for which EM has the largest gains (safety, furniture, carseats, and strollers) all exhibit d > 0.025,
while categories such as feeding and gear have d < 0.012. Investigating further, we found that, as
foreshadowed in Section 3.1, KA performs particularly poorly in the high-d setting because of its
projection step—projection can result in KA learning a near-diagonal matrix.

If instead of the Wishart initialization we use the moments-matching initializer, this alleviates KA’s
projection problem, as it provides a starting point closer to the true kernel. With this initializer, KA
and EM have comparable test log-likelihoods (average EM gain of 0.4%). However, the moments-
matching initializer is not a perfect fix for the KA algorithm in all settings. For instance, consider
a data-poor setting, where for each category we have only n = 2N training examples. In this
case, even with the moments-matching initializer EM has a significant edge over KA, as shown in
Figure 1b: EM gains an average of 4.5%, with a maximum gain of 16.5% for the safety category.

To give a concrete example of the advantages of EM training, Figure 2a shows a greedy approx-
imation [28, Section 4] to the most-likely ten-item registry in the category “safety”, according to
a Wishart-initialized EM model. The corresponding KA selection differs from Figure 2a in that it
replaces the lens filters and the head support with two additional baby monitors: “Motorola MBP36
Remote Wireless Video Baby Monitor”, and “Summer Infant Baby Touch Digital Color Video Mon-
itor”. It seems unlikely that many consumers would select three different brands of video monitor.

Having established that EM is more robust than KA, we conclude with an analysis of runtimes.
Figure 2b shows the ratio of KA’s runtime to EM’s for each category. As discussed earlier, EM is
asymptotically faster than KA, and we see this borne out in practice even for the moderate values of
N and n that occur in our registries dataset: on average, EM is 2.1 times faster than KA.

5 Conclusion

We have explored learning DPPs in a setting where the kernel K is not assumed to have fixed values
or a restrictive parametric form. By exploiting K’s eigendecomposition, we were able to develop a
novel EM learning algorithm. On a product recommendation task, we have shown EM to be faster
and more robust than the naive approach of maximizing likelihood by projected gradient. In other
applications for which modeling negative interactions between items is important, we anticipate that
EM will similarly have a significant advantage.
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