
A Proofs

Theorem 1. For a positive semidefinite matrix L and x ∈ [0, 1]N ,∑
Y

∏
i∈Y

xi

∏
i 6∈Y

(1− xi) det(LY ) = det(diag(x)(L− I) + I) . (1)

Proof. Assume momentarily that xi < 1, ∀i.∑
Y

∏
i∈Y

xi

∏
i 6∈Y

(1− xi) det(LY ) =
∏
i

(1− xi)
∑
Y

∏
i∈Y

xi

1− xi
det(LY ) (2)

=
∏
i

(1− xi)
∑
Y

det((diag(x)diag−1(1− x)L)Y ) (3)

=
∏
i

(1− xi) det(diag(x)diag
−1(1− x)L+ I) (4)

= det(diag(x)L+ diag(1− x)) (5)
= det(diag(x)(L− I) + I) . (6)

The second and fourth equalities follow from the multilinearity of the determinant, and the third
follows from DPP normalization. Since Equation (1) is a polynomial in x, by continuity, the formula
holds when some xi = 1.

Corollary 2. For f(Y ) = log det(LY ), we have F̃ (x) = log det(diag(x)(L− I) + I) and

∂

∂xi
F̃ (x) = tr((diag(x)(L− I) + I)−1(L− I)i) , (7)

where (L− I)i denotes the matrix obtained by zeroing all except the ith row of L− I .

Lemma 3. When u,v ≥ 0, we have

∂2

∂s∂t
F̃ (x+ su+ tv) ≤ 0 (8)

wherever 0 < x+ su+ tv < 1.

Proof. We begin by rewriting F̃ in a symmetric form:

F̃ (x+ su+ tv) = log det(diag(x+ su+ tv)(L− I) + I) (9)

= log det(diag(x+ su+ tv)) + log det(L− I + diag(x+ su+ tv)−1) (10)
= log det(D) + log det(M) , (11)

where D(s, t) = diag(x+ su+ tv) and M(s, t) = L− I +D−1(s, t). Note that D,M � 0, since
0 < x+ su+ tv < 1. We have

∂

∂t
F̃ (x+ su+ tv) = tr(D−1(s, t)diag(v)−M−1(s, t)D−2(s, t)diag(v)) . (12)

Taking the second derivative with respect to s,

∂2

∂s∂t
F̃ (x+su+ tv) = tr(−D−2(s, t)diag(v)diag(u)+2M−1(s, t)D−3(s, t)diag(v)diag(u)

−M−1(s, t)D−2(s, t)diag(u)M−1(s, t)D−2(s, t)diag(v)) . (13)

Since diagonal matrices commute and tr(AB) = tr(BA), the above is equal to −tr(SS>) ≤ 0,
where

S = D−1(s, t)diag(
√
v)diag(

√
u)−D−1(s, t)diag(

√
v)M−1(s, t)diag(

√
u)D−1(s, t) . (14)

(Note that S is defined since u,v ≥ 0.)
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Corollary 4. F̃ (x+ tv) is concave along any direction v ≥ 0 (equivalently, v ≤ 0).

Lemma 5. If x is a local optimum of F̃ (·), then for any y ∈ [0, 1]N ,

2F̃ (x) ≥ F̃ (x ∨ y) + F̃ (x ∧ y) , (15)

where (x ∨ y)i = max(xi, yi) and (x ∧ y)i = min(xi, yi).

Proof. By definition, x∨y−x ≥ 0 and x∧y−x ≤ 0. By Corollary 4 and the first order definition
of concavity,

∇F̃ (x)>(x ∨ y − x) ≥ F̃ (x ∨ y)− F̃ (x) (16)

∇F̃ (x)>(x ∧ y − x) ≥ F̃ (x ∧ y)− F̃ (x) . (17)

Adding the two equations gives the desired result, given that ∇F̃ (x)>(z − x) ≤ 0 for any z ∈ S
at a local optimum x.

Let Xi ⊆ [0, 1] be a subset of the unit interval representing xi = |Xi|, where |Xi| denotes the
measure of Xi. F̃ ∗ is defined on X = (X1,X2, . . . ,XN ) by

F̃ ∗(X ) = F̃ (x), x = (|X1|, |X2|, . . . , |XN |) . (18)

Lemma 6. F̃ ∗ is submodular.

Proof. We first show that for x ≤ y and a ≥ 0, F̃ (x + a) − F̃ (x) ≥ F̃ (y + a) − F̃ (y). By the
fundamental theorem of calculus,

F̃ (x+ a)− F̃ (x) =

∫ 1

0

∂

∂t
F̃ (x+ ta) dt , (19)

and by a second application,

(F̃ (y + a)− F̃ (y))− (F̃ (x+ a)− F̃ (x)) =

∫ 1

0

∫ 1

0

∂2

∂s∂t
F̃ (x+ s(y − x) + ta) dt ds . (20)

Since y − x ≥ 0, Corollary 4 allows us to conclude that the second derivatives are nonpositive.

Now, for X ⊆ Y and A ∩ Y = ∅ where X ,Y,A represent x,y, and a, respectively, we have

F̃ ∗(X ∪A)− F̃ ∗(X ) = F̃ (x+ a)− F̃ (x) ≥ F̃ (y + a)− F̃ (y) = F̃ ∗(Y ∪ A)− F̃ ∗(Y) . (21)

Lemmas 5 and 6 suffice to prove the following theorem, which appears for the multilinear extension
in [1], bounding the approximation ratio of our algorithm.

Theorem 7. Let F̃ (x) be the softmax extension of a nonnegative submodular function f(Y ) =

log det(LY ), let OPT = maxx∈S F̃ (x), and let x and z be local optima of F̃ in S and S∩{y | y ≤
1− x}, respectively. Then

max(F̃ (x), F̃ (z)) ≥ 1

4
OPT ≥ 1

4
max
Y ∈S

log det(LY ) . (22)

We omit the proof since it is unchanged from [1].

Corollary 8. Algorithm 2 yields a 1/4-approximation to the DPP MAP problem whenever
log det(LY ) ≥ 0 for all Y . In general, the objective value obtained by Algorithm 2 is bounded
below by 1

4 (OPT − p0) + p0, where p0 = minY log det(LY ).

Theorem 9. If S = [0, 1]N , then for any local optimum x of F̃ , either x is integral or at least one
fractional coordinate xi can be set to 0 or 1 without lowering the objective.
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Proof. Note that by multilinearity of the determinant, det(diag(x)(L − I) + I) is linear in each
coordinate xi if all the other coordinates x−i are held fixed. That is, F̃ (xi,x−i) = log(axi + b),
where a and b depend on x−i. Suppose that coordinate i is fractional (0 < xi < 1) at a local
optimum, then the gradient with respect to xi must be zero, since the polytope constraint is not
active. Since ∂F̃ (x)

∂xi
= a

axi+b , this is only possible if a = 0. Hence setting xi to 0 or 1 does not
affect the objective.
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B Objective visualization

To give a better feel for the softmax and multilinear objectives, we plot them for a toy example here.
Consider the case where the ground set consists of just the two items pictured on the left in Figure 1.
The optimization domain in this case is the rectangle shown on the right in the same figure.

x1
0

1

x2

0

1

B1 B2

N = 2

Figure 1: Left: Ground set consisting of two vectors. Right: Domain of the optimization variables;
xi = probability of including vector i.

Plotting the softmax (top, red) and multilinear (bottom, blue) objectives over this domain yields the
images in Figure 2. At the integer points (circled in the left image), the two objective functions agree
with each other and their value is exactly the determinant of the set specified by x. For example,
notice that the value of the objectives at x = [1, 0] is smaller than at x = [0, 1] since vector B1 has
smaller magnitude than B2.

Figure 2: Left: Objectives plotted on the domain from Figure 1. Integer points are circled. Right:
Rotated 90◦ clockwise. The points x = [1, 0] and x = [0, 1] are circled.

If we look at a cross-section in an all-positive direction, the objectives are always concave. One
such cross-section is illustrated on the left in Figure 3. However, in other directions, there are no
guarantees.

Figure 3: Left: Example all-positive, concave cross-section of the objectives. Right: Example non-
all-positive, non-concave cross-section of the objectives.
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C Matched summarization example

Figure 4 contains an example set of pairs of statements made by candidates Paul and Romney in the
2012 US Republican primary debates.

Paul Romney
1 Well, it’s a tragedy because this is a conse-

quence of the government being involved
in medicine since 1965 ... When the gov-
ernment gets involved in medicine, you
don’t get better care; you get – cost goes
up and it distorts the economy and leads to
a crisis ...

... what’s wrong with our health care sys-
tem in America is that government is play-
ing too heavy a role ... 18 percent of our
GDP is spent on health care. The next
highest nation in the world is 12 percent.
...

2 ... Social Security is broke. We spent all
the money and it’s on its last legs unless we
do something ... Now, what I would like to
do is to allow all the young people to get
out of Social Security and go on their own
...

... Social Security is a responsibility of the
federal government, not the state govern-
ments, that we’re going to have one plan,
and we’re going to make sure that it’s fis-
cally sound and stable. And I’m abso-
lutely committed to keeping Social Secu-
rity working ...

3 ... I was fighting over a decade to try to
explain to people where the housing bub-
ble was coming from. So Freddie Mac is
bailed out by the tax payers ... and they’re
still getting bailed out ...

I look at Fannie and Freddie and just think
that obviously they’ve grown massively be-
yond the scope that had been envisioned
for them originally ... we have to rethink
about how we’re going to support a grow-
ing housing industry.

4 ... the people are not ready. We don’t have
any money. We have too many wars. We
– the people want to come home and they
certainly don’t want a hot war in Iran right
now and I – I think that would be the most
foolish thing in the world to do right now
is take on Iran.

... the president is building roughly nine
ships a year. We ought to raise that to 15
ships a year ... We want to show Iran, any
action of that nature will be considered an
act of war, an act of terror and – and Amer-
ica is going to be keep those sea lanes open.

5 I strongly supported Ronald Reagan ... But
in the 1980s, we spent too much, we taxed
too much, we built up our deficits, and it
was a bad scene ...

you talk about ... the Reagan revolution
and the jobs created during the Reagan
years and so forth ... But you know what?
The free people of America, pursuing their
dreams ... those are the people that make
America strong, not Washington.

6 ... I also resent the fact that illegals come
into this country ... I have a strong posi-
tion on immigration. I don’t think that we
should give amnesty and they become vot-
ers ...

... we let people come across our border il-
legally or stay here and overstay their visa
... we have to secure our border and crack
down on those that bring folks here and
hire here illegally.

7 ... this administration already has accepted
the principle that, when you assume some-
body is a terrorist, they can be targeted
for assassination, even American citizens
... You don’t want to translate our rule of
law into a rule of mob rule.

... We have a Constitution and we follow
the law ... Our nation was founded on a
principal of religious tolerance ... we treat
people with respect regardless of their reli-
gious persuasion.

Figure 4: An example of the type of sets of pairs our method selects. (The quotes are actually several
sentences longer than what is shown here, but for brevity, some information is elided with ellipses.)
Qualitatively, this example set is appealing in that it matches our intuition of what maximizing the
objective should achieve. That is, this match is both diverse — contains quotes on a variety of
topics, like healthcare, taxes, jobs — and at the same time maintains good match quality — the
quotes within each pair are frequently on the same topic.
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