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GRAPH-BASED LEARNING

Labels: verb (V), noun (N), etc.
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Minimize Laplacian-based objective,
summing over all neighbors of unlabeled nodes:
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STRUCTURED PREDICTION
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Minimize negative log-likelihood,
summing over all labeled sentences:
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COMBINATION

Most closely related work: Subramanya et al. (EMNLP 2010) ---
terative procedure, marginals of CRF inrtialize graph-propagation (GP),
then GP results provide addrtional training data for CRF learning.
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This work: retains efficiency of Subramanya et al (EMNLP
2010) while optimizing an extendible, joint objective.

JOH\IT OBJECTIVE
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Lap(q) + NLik(ps) + KL(q || po)

Couple the methods via KL divergence.
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(# tags)® values, compactly represented by @ in the case of P
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OPTIMIZATION

P's parameterization makes its update simple:
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-Problem 1:projection is hard  ¢* ¢ A

-Problem 2: no compact form  (# tags)(?s 1en&th) values

X Standard gradient descent on the primal isn't feasible for q

What about optimizing g in the dual! j(q, pg) + (Z q; — 1)
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Posterior Regularization (PR) of Ganchev et al. (JMLR 2010) uses
the dual, and differs from our objective only In the first term.

This work: Lap(q) = Standard PR: Linear(m)
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dual requires an expensive matrix inverse.
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EXPONENTIATED GRADIENT

Alternative type of gradient update makes “projection” efficient:
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product of p-factors

projp —» Zq(xi),computable via forward-backward

X TENSION

Lap( ) — any convex, differentiable g(m)
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EXPERIMENTS

Part-of-speech tagging
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Handwriting recognition

GP GP - CRF CRF J
Mean 17.57 15.07 9.82 4.89
StdDev 0.30 0.35 0.48 0.42

Code: https://code.google.com/p/pr-graph/
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