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GRAPH-BASED LEARNING
Labels: verb (V), noun (N), etc.
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Minimize Laplacian-based objective,
summing over all neighbors of unlabeled nodes:

STRUCTURED PREDICTION
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Minimize negative log-likelihood, 
summing over all labeled sentences:

COMBINATION

This work: retains efficiency of Subramanya et al (EMNLP 
2010) while optimizing an extendible, joint objective.

Most closely related work: Subramanya et al. (EMNLP 2010) --- 
Iterative procedure, marginals of CRF initialize graph-propagation (GP), 

then GP results provide additional training data for CRF learning. 
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JOINT OBJECTIVE

Lap(q) + KL(q k p✓)
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Couple the methods via KL divergence.

values, compactly represented by ✓ in the case of p

OPTIMIZATION
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p’s parameterization makes its update simple:

✓ update: ✓0 = ✓ � ⌘ @J (q,p✓)
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q has more freedom: qi 2 � of dimension (# tags)

(i’s length)

-Problem 2: no compact form

-Problem 1: projection is hard

Standard gradient descent on the primal isn’t feasible for 

standard gradient update: proj�( )qiy
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Lap(m) is a quadratic function though, so its 
dual requires an expensive matrix inverse.

Posterior Regularization (PR) of Ganchev et al. (JMLR 2010) uses 
the dual, and differs from our objective only in the first term.

Linear(m)Lap(q)This work: Standard PR:
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EXPONENTIATED GRADIENT
Alternative type of gradient update makes “projection” efficient:
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EXTENSION

Theorem: The EM-like optimization procedure below 
converges to a local optimum of the joint objective
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E-step:

M-step:
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Lap(q) g(m)any convex, differentiable
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EXPERIMENTS

CRFGP → CRFGP J

Code: https://code.google.com/p/pr-graph/

GP GP → CRF CRF J

Mean 17.57 15.07 9.82 4.89

StdDev 0.30 0.35 0.48 0.42

Handwriting recognition

Part-of-speech tagging
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