APPROXIMATE INFERENCE FOR
DETERMINANTAL POINT PROCESSES

Jennifer Gillenwater
A DISSERTATION
in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2014

Ben Taskar, Associate Professor of Computer and Information Science
Supervisor of Dissertation

Emily Fox, Adjunct Professor of Computer and Information Science
Co-Supervisor of Dissertation

Lyle Ungar, Professor of Computer and Information Science
Graduate Group Chairperson

Dissertation Committee:

Michael Kearns, Professor of Computer and Information Science

Ali Jadbabaie, Professor of Electrical and Systems Engineering

Alexander Rakhlin, Assistant Professor of Statistics

Jeft Bilmes, Professor of Electrical Engineering, Univeristy of Washington

APPROXIMATE INFERENCE FOR
DETERMINANTAL POINT PROCESSES

COPYRIGHT

2014

Jennifer Gillenwater

Licensed under a Creative Commons Attribution-ShareAlike 4.0 License.
To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/4.0/

http://creativecommons.org/licenses/by-sa/4.0/

Acknowledgments

I would first like to thank my advisor, Ben Taskar: for his hundreds of “how’s it
going?” emails that catalyzed the best conversations of my graduate career; for his
prescient advice that worked miracles on our experiments; for his uncanny ability
to warp whatever time was left before a deadline into enough time to write a paper.
I am deeply grateful to Emily Fox for so generously stepping in to fill Ben’s shoes
this past year. Further, I am indebted to my committee chair, Michael Kearns, and
to my committee members, Ali Jadbabaie, Sasha Rakhlin, and Jeff Bilmes for their
guidance and insights that helped to shape this document. I would also like to offer
thanks to my friends for their great support: to Alex Kulesza for leading countless
trips to the water cooler and sharing with me his dependably profound perceptions
(DPPs); to Kuzman Ganchev and Joao Graga for getting me started at Penn with
good PR work; to David Weiss for his energetic co-TAing; to Ben Sapp for running
Ben’s Union of Grad Students (BUGS); to Emily Pitler and Annie Louis for being my
academic big sisters; to Partha Talukdar, Kayhan Batmanghelich, Katie Gibson, Alex
Roederer, Andrew King, Luheng He, and many others for more than I can say here.
Additionally, I owe a lot to my family: my brother, who keeps me informed about
what is “cool”; my sister, who made it through my entire defense without napping;
my dad, who houses Razzle, the World’s Greatest Dog, and who is (really) the World’s
Greatest Dad. Finally, I want to thank Arjun, who has been my companion on so

many recent adventures, and with whom I hope to share many more.

il

ABSTRACT

APPROXIMATE INFERENCE FOR DETERMINANTAL POINT PROCESSES
Jennifer Gillenwater
Ben Taskar
Emily Fox

In this thesis we explore a probabilistic model that is well-suited to a variety
of subset selection tasks: the determinantal point process (DPP). DPPs were origi-
nally developed in the physics community to describe the repulsive interactions of
fermions. More recently, they have been applied to machine learning problems such
as search diversification and document summarization, which can be cast as subset
selection tasks. A challenge, however, is scaling such DPP-based methods to the size
of the datasets of interest to this community, and developing approximations for
DPP inference tasks whose exact computation is prohibitively expensive.

A DPP defines a probability distribution over all subsets of a ground set of items.
Consider the inference tasks common to probabilistic models, which include nor-
malizing, marginalizing, conditioning, sampling, estimating the mode, and maxi-
mizing likelihood. For DPPs, exactly computing the quantities necessary for the
first four of these tasks requires time cubic in the number of items or features of
the items. In this thesis, we propose a means of making these four tasks tractable
even in the realm where the number of items and the number of features is large.
Specifically, we analyze the impact of randomly projecting the features down to a
lower-dimensional space and show that the variational distance between the result-
ing DPP and the original is bounded. In addition to expanding the circumstances in
which these first four tasks are tractable, we also tackle the other two tasks, the first
of which is known to be NP-hard (with no PTAS) and the second of which is conjec-
tured to be NP-hard. For mode estimation, we build on submodular maximization
techniques to develop an algorithm with a multiplicative approximation guarantee.
For likelihood maximization, we exploit the generative process associated with DPP
sampling to derive an expectation-maximization (EM) algorithm. We experimen-
tally verify the practicality of all the techniques that we develop, testing them on
applications such as news and research summarization, political candidate compar-

ison, and product recommendation.

iv

Contents

Acknowledgements iii
Abstract iv
List of Tables ix
List of Figures xi
List of Algorithms xii
1 Introduction 1
1.1 Motivating subset selection applications 2

1.2 Expressing set-goodness as a determinant 5

1.3 DefinitionofaDPP 7

1.4 Motivating DPP inference tasks 8

1.5 ‘Thesis contributions e 10

2 DPP Basics 13
2.1 Geometric interpretation oL 13

2.2 Inference e 15
22,1 Normalizing 15

222 Marginalizing L oo 17

223 Conditioning L Lo 19
224 Sampling 22
225 MAPestimation 27
2.2.6 Likelihood maximization 29
2.2.7 Maximizingentropy 30
2.2.8 Computing expectations 30
23 Closure vt 32
2.4 Dual representation Lo o 33
2.4.1 Normalizing 34
242 Marginalizing L Lo L 34
243 Conditioning o 34
244 Sampling L L o 35
2.5 Quality-similarity decomposition 37
DPP Variants 39
3.1 Cardinality-constrained DPPs, 39
32 Structured DPPs. 42
33 MarkovDPPs 44
34 Continuous DPPs L oo 46
Dimensionality Reduction 48
4.1 Random projections 49
42 Threading k-SDPPs 52
4.3 Toy example: geographical paths 54
4.4 'Threading document collections 56
44.1 Relatedwork o L 58
442 Setup ... 59
443 Academiccitationdata L. 61
444 Newsarticles 61
4.5 Related random projectionswork oL L. 69
4.6 Related DPPwork. 72
4.6.1 MCMCsampling 73

vi

4.6.2 NystrOm approximation 76

5 MAP estimation 84
5.1 Definition of submodularity 86
5.2 Log-submodularityofdet 87
5.3 Submodular maximization L. 89

5.3.1 Monotone [. e 89
5.3.2 Non-monotone f 91
5.3.3 Constrained f 93
5.4 Polytope constraints L L Lo 94
5.5 Softmax extension e e 95
5.5.1 Softmax maximization algorithms. 99
5.5.2 Softmax approximation bound 101
553 Rounding L L 104
5.6 Experiments 106
5.6.1 Syntheticdata L. 107
5.6.2 Dolitical candidate comparison 109
5.7 Model combination L L L oo 111

6 Likelihood maximization 112
6.1 Alternatives to maximizing likelihood 113
6.2 Feature representation 116
6.3 Concave likelihood-based objectives 117
6.4 Non-concave likelihood-based objectives 120
6.5 MCMC approach for parametric kernels 121
6.6 EM approach for unrestricted kernels oL 123

6.6.1 DProjected gradientascent 123
6.6.2 Eigendecomposing L L 125
6.6.3 Lower bounding the objective 126
6.64 E-step 127
6.6.5 M-step eigenvalueupdates 129
6.6.6 M-step eigenvector updates 130
6.7 Experiments 134

vii

6.7.1 Baby registry tests

......................

6.7.2 Exponentiated gradient

...................

7 Conclusion

7.1 Future work

..............................

viii

2.1
2.2

4.1
4.2
4.3

6.1
6.2

List of Tables

Complexity of inference L ... 16
Kernel conditioning formulas. 20
News timelines automatic evaluation 68
News timelines Mechanical Turk evaluation 69
News timeline runtimes v v v v v v e e e e e 69
Baby registry datasetsizes L L 135
Baby registry EM evaluation 138

ix

1.1
1.2
1.3

2.1
3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3

List of Figures

DPP product recommendations 2
Geometry of determinants L. 6
Sampling/MAP for points in the plane 10
DPP sampling algorithms oL 24
Example structured DPP sample 42
Geographical path samples 54
Fidelity of random projections 55
Document threading framework 56
Random projection of a single vector 57
Coracitationthreads 62
News graph visualization 64
k-SDPP news timelines 66
DTM news timelines 67
News timeline Mechanical Turk task 70
Det log-submodularity in 2-3 dimensions 87
Symmetric greedy algorithmso L 93
Matching matroid polytope example 96

5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4

Softmax upper-bounding multilinear 98

Concave softmax cross-sections v v v v v v v e 102
Synthetic MAP results. oo 107
Political candidate comparison resules L. 109
Kernel learning algorithms 125
Baby registry EM evaluation 137
EM product recommendations 139
EM runtime evaluation, 140

xi

O 00 I &\ N AW N~

[—
— O

—_
[\

List of Algorithms

O(NK*) DPP Sampling 24
O(Nk?*) DPP Sampling 24
Dual DPP Sampling. oL 37
Nystrom-based Dual DPP Sampling 81
GREEDY for DPPMAP 89
RANDOMIZED-SYMMETRIC-GREEDY for DPP MAP 93
SYMMETRIC-GREEDY for DPPMAP 93
CcOND-GRAD (Frank-Wolfe) 100
SOFTMAX-OPT for DPPMAP 100
CONSTRAINED-GREEDY for DPPMAP 109
Projected gradient for DPP learning 125
Expectation-Maximization for DPP learning 125

xii

Introduction

When there is a mismatch between the quantity of a resource available and con-
sumer capacity, mechanisms for selecting a subset of the overlarge group are often
invoked. For example: for a limited number of job openings, there may be an exces-
sive number of applicants, or, for a camping expedition, there may be more supplies
available than a camper can fit in his backpack. Moreover, as the amount of in-
formation readily available to us via electronic resources grows, we are increasingly
facing this type of dilemma in the setting where the overlarge group is a form of
information. For this reason, summarization mechanisms are becoming more and
more important for paring information down to manageable portions that human
(and machine) learners can easily digest. Subset selection is one elementary way of
formalizing the summarization task.

In general, across a wide variety of practical applications, for the task of correcting
disparities between resources and consumers, not only has subset selection been the
fundamental approach, but also it happens that desirable subsets share two basic
characteristics: a good subset is one whose individual items are all high-quality, but
also all distinct. For instance, in the case of filling a set of job openings on a team,

one might want to select applicants with high GPAs, but with diverse academic

majors, so as to have a variety of informed perspectives on the company’s projects.
The ability to balance the dual goals of quality and diversity is at the core of most

effective subset selection methods.

I.I MOTIVATING SUBSET SELECTION APPLICATIONS

To give additional insight into situations where such subsets are desired, we list here

examples of how common applications are typically cast in the subset selection mold:

* Product recommendation (McSherry, 2002; Gillenwater, Kulesza, Fox, and
Taskar, 2014): For retailers with a large inventory, selecting a good subset of
products to recommend to a given customer is important not only for boosting
revenue, but also for saving the customer time. In this setting, a good subset
should contain products that other customers have rated highly, but should
also exhibit diversity—if a customer already has a carseat in their cart, they
most likely will not buy an additional carseat, no matter how popular it is
with other consumers. Figure 1.1 illustrates the type of product diversity that

a determinantal point process (DPP) can achieve.

Graco Sweet Slumber Boppy Noggin Nest Cloud b Twilight Braun ThermoScan Aquatopia Bath
Sound Machine Head Support Constellation Night Light Lens Filters Thermometer Alarm

‘.
S
I\

/

O (@)
Britax EZ-Cling TL Care Organic Regalo Easy Step VTech Comm. Infant Optics
Sun Shades Cotton Mittens Walk Thru Gate Audio Monitor Video Monitor

Figure 1.1: A set of 10 baby safety products selected using a DPP.

* Document summarization (Lin and Bilmes, 2012; Kulesza and Taskar,
2012): Given a set of documents consisting of a total of N sentences, con-

sider the problem of selecting a subset of the sentences to summarize the core

2

content of the documents. There are many variations on this task, including
some where the ground set consists of N structures, rather than just simple

sentences; see for example the news threading application in Chapter 4.

* Web search (Kulesza and Taskar, 2011a): Given a large number of images or
documents, consider the problem of selecting a subset that are relevant to a
user query. Note that diversity is important in this setting as many queries are
ambiguous (e.g. the search “jaguars” could refer to the cats, the cars, or the

football team).

* Social network marketing (Hartline, Mirrokni, and Sundararajan, 2008):
Consider a social network consisting of N people. Suppose a seller has a digital
good that costs nothing to copy (unlimited supply). In this setting, a common
marketing strategy is “influence-and-exploit™: give the product to a subset of
the people for free, then offer it to the rest of the network at a price. Intu-
itively, the people who get the product for free should be high-degree nodes in
the network, but also spread out such that no one will be too many hops from

a product owner.

* Auction revenue maximization (Dughmi, Roughgarden, and Sundararajan,
2009): Given a base set of bidders, a pool of N potential bidders, and a budget
k, a common task is to recruit a subset of £ additional bidders for the auction.

This is sometimes called the “market expansion problem”.

* Sensor placement for Gaussian Processes (Krause, Singh, and Guestrin,
2008): Suppose there are N possible locations for sensors (e.g. for measuring
pressure, temperature, or pollution). For a given sensor budget, at most &
sensors can be placed. Thus, it is important to be able to select a subset of the
possible locations at which to actually place sensors, such that the measure-
ments from these sensors will be as informative as possible about the space as

a whole.

* Image segmentation (Kim, Xing, Fei-Fei, and Kanade, 2011): An initial step
in most image-manipulation software is to segment a given image into k parts

such that it is homogeneous within each part (e.g. separating an image into

“sky” and “earth” is a common task, with & = 2). The segmentation task can
be formulated as the problem of identifying one pixel (or superpixel) to serve as
the “center” for each segment. Thus, the segmentation task reduces to selecting

a size-k subset of an image’s N pixels.

* Pose tracking (Kulesza and Taskar, 2010): Consider the problem of identify-
ing the pixels corresponding to each person in a video. For each video frame,
a subset of the pixels must be chosen. Diversity is important in this setting
because people tend to occupy disjoint locations in space, so the goodness of

a subset tends to increase as its spatial diversity within a given frame increases.

* Network routing (Lee, Modiano, and Lee, 2010): Given the graph of a net-
work, suppose that each link (edge) has some failure probability. Consider
the problem of selecting a set of k paths from a source node to a target node
such that if a message is sent along all of these paths, failure to deliver (at least
one copy of) the message to the target is minimized. The best set of paths will
be high-quality (all links on paths will have low failure probability), but also
diverse (the failure of a link on one path should not hurt the other paths).

* Motion summarization (Affandi, Kulesza, Fox, and Taskar, 2013b): Given
videos consisting of individuals performing a specific activity, consider the task
of selecting a subset of the N video frames to summarize the activity. For
example, the main motions involved in an activity such as basketball can be
summarized by a few frames that are diverse in terms of the position of an

athlete’s limbs.

There are also several basic machine learning tasks that are sometimes cast as

subset selection problems:

* Clustering (Elhamifar, Sapiro, and Vidal, 2012; Reichart and Korhonen,
2013; Shah and Ghahramani, 2013; Kang, 2013): Given N data points, select
a subset of k& points to serve as cluster centers or as representatives of the overall

dataset.

* Dimensionality reduction (Guyon and Elisseeff, 2003): Given N features,

select a subset of k features to which to assign non-zero weight in a model.

4

The complexity of the tasks mentioned in this section is increased by the frequent
practical need for constraints on the selected subset, Y C {1,..., N}. These range
from relatively simple cardinality constraints (Y| < &, |Y| = k), to intersections of

multiple matroids. See Chapter 5 for additional discussion of subset constraints.

1.2 EXPRESSING SET-GOODNESS AS A DETERMINANT

Having established some motivation for solving subset selection problems where the
end goal is a high-quality but diverse set, in this section we consider basic measures
of quality and diversity that lead directly to the definition of a determinantal point
process (DPP).

Given N items, let item ¢ be represented by a D-dimensional feature vector B; €
RP*1, For example, in the case of document summarization each sentence is an item,
and D might be the size of the vocabulary. Each entry in B; could be a count of the
number of occurrences of the corresponding vocabulary word, normalized in some
reasonable manner. One simple way to interpret B; is to assume that its magnitude,
| Bill2, represents the quality of item ¢, and that its dot product with another item’s
feature vector, B, B;, corresponds to the similarity between these two items.

For sets of size 1, the goodness of a set can then reasonably be represented by
the quality of its only item, or any monotonic transformation of that quality. For
example, we could score each singleton set {i} according to its quality squared, || B; |3
In geometric terms, this is the squared length (1-dimensional volume) of B;. It is
also (trivially) the determinant of the 1 x 1 matrix B, B;.

As a measure of how good a set consisting of two items is, it is desirable to have
an expression that not only rewards high quality, but also penalizes similarity. Ex-
tending the geometric intuition from the singleton setting, for {i, j} the squared
area (2-dimensional volume) of the parallelogram spanned by B; and B; would be
a reasonable choice. See Figure 1.2 for an example. Theorem 1.1 establishes that
the expression for this squared area is: ||B;||3||B;||3 — (B B;j)?. The first term here
is the product of the items’ squared qualities and the second term is the square of
their similarity, so it is clear that this expression captures our stated goal of rewarding
quality while penalizing similarity.

Theorem 1.1. For vectors B;, B; € RP*Y, the area of the parallelogram with vertices 0,

5

feature space .

L4
. _ T ,
quality = \/B;' B; B, + B, ',".
similarity = B B; Py R
* U
O’ ,'
24
r ’
* .

Figure 1.2: The area of the parallelogram outlined by B; and B; corresponds to the
square root of the proposed set-goodness measure. Left: Reducing || B;|» corre-
sponds to reducing the quality of item j, hence making the set {7, j} less desirable.
Notice that the reduction in item quality produces a reduction in parallelogram area.
Right: Reducing the angle between B; and B; corresponds to making the items less
diverse, again making the set {i, j} less desirable. The parallelogram area is similarly
reduced in this case.

B;, Bj, and B; + B; is /| Bill3|| By[3 — (B B;)*.
Proof. See Section 2.1.]

In addition to being related to area, this set-goodness formula can be expressed

as a determinant:

IBill5 B B; B!
' = det "B Bl | = Bil3lIBsll5 - (B B;)?. (1.1)
B'B; B3 B}

The geometric and determinantal formulas for size-1 and size-2 sets extend in
a fairly straightforward manner to sets of all sizes. Consider replacing length and
area with k-dimensional volume. For a set of size 3, this is the canonical notion of
volume. For larger sets, applying the standard “height x base” formula gives the

recursive definition:
vol(B) = || By |avol (projwlwm)) , (1.2)

6

where proj, , (-) projects to the subspace perpendicular to B;, and the subscript
Bs.n indexes all columns of B between 2 and N, inclusive. Theorem 1.2 establishes
that the square of this geometric formula is equal to the natural extension of Equa-

tion (1.1), the determinantal formula, to larger size sets: det(B' B) = vol(B)?.

Theorem 1.2. Given a D x N matrix B with N < D, consider the N-parallelotope
whose vertices are linear combinations of the N columns of B with weights in {0,1}:
V={uBi+...4+axBy | o € {0,1} Vi € {1,...,N}}. The volume of this N-

parallelotope is \/det(BT B).
Proof. See Section 2.1. O]

This basic extension of a natural set-goodness measure from size-1 and size-2 sets
to sets of arbitrary size brings us immediately to the definition of a determinantal

point process (DPP).

1.3 DEFINITION OF A DPP

The previous section informally defined a set-goodness score in terms of a feature
matrix B. Here we give a more rigorous definition.

At a high level, stochastic processes are generalizations of random vectors. Dis-
crete, finite stochastic processes are equivalent to random vectors: a sequence of
N random variables [Y;,...,Yy], associated with a joint probability distribution
P(Yi =y1,..., YN = yn). A discrete, finite point process is a type of discrete, finite
stochastic process where each variable is binary, y; € {0, 1}, indicating the occurrence
or non-occurrence of some event (e.g. neuron spike, lightening strike, inclusion of
a sentence in a summary). This thesis focuses on discrete, finite determinantal point
processes (DPPs), which are point processes where the occurrence of one event cor-
responds with a decrease in the probability of similar events. That is, these processes
exhibit repulsion between points, resulting in diversity.

Formally, let the points (sometimes referred to as events or items) under consid-
eration be those in the set Y = {1,2,..., N}. Let 2 refer to the set of all subsets
of Y, which has magnitude 2. This includes the empty set, 0, and the full set, Y.
We will frequently use Y C Y to denote one of these subsets, and Y to denote a

random variable whose value can be any Y C Y. According to Borodin and Rains
(2005), a random variable Y drawn according to a (discrete, finite) determinantal

point process Py, has value Y with probability:
PL(Y =Y) ocdet(Ly), (1.3)

for some positive semi-definite (PSD) matrix L € RV*Y. The Ly here denotes the

e It
1,j€Y
is assumed that det(Ly) = 1. In what follows, we will use the shorthand P (Y)) for

restriction of L to rows and columns indexed by elements of Y: Ly = [L;;]

P(Y =Y) where the meaning is clear.

Note that the definition given by Equation (1.3) is similar to the geometrically
motivated set-goodness score from Section 1.2, but with L in place of B" B. These
definitions are in fact equivalent. To see this, note that B" B can be any Gram matrix.
'The equivalence of the definitions then follows immediately from the equivalence of
the class of Gram matrices and the class of PSD matrices: every PSD matrix can
be written as the Gram matrix from some set of (potentially infinite dimensional)

vectors, and every Gram matrix is PSD.

1.4 MOTIVATING DPP INFERENCE TASKS

Having established the formal definition of a DPD, it is now possible to discuss
its associated inference problems and how each relates to the subset selection task.
Common inference operations include MAP estimation, sampling, marginalizing,

conditioning, likelihood maximization, and normalizing.

e MAP estimation: Finding the mode, or as it is sometimes referred to in con-
ditional models, maximum a posteriori (MAP) estimation, is the problem of
finding the highest-scoring set. This is the set for which the balanced mea-
sure of quality and diversity developed in Section 1.2 is highest. Clearly, this
is the inference operation we would ultimately like to perform for the subset
selection tasks from Section 1.1. Unfortunately, this problem corresponds to
volume maximization, which is known to be NP-hard. Thus, for the problem
of selecting the highest-scoring set under a DPP, we must rely on approxima-

tion algorithms.

e Sampling: Being able to sample from a DPP’s distribution is important for
a wide variety of tasks. These include estimating expected values and com-
bining DPPs with other probabilistic models to build novel generative stories.
Sampling is also one very simple way of approximating a DPP’s mode; since
higher-quality, more diverse sets have greater probability mass, we are more
likely to sample them. Even this simple MAP approximation technique can
often yield better sets than non-DPP-based subset selection methods.

e Marginalizing: Sampling algorithms, as well as several other MAP estimation
techniques, rely on the computation of marginal probabilities for efficiency.
More concretely, one of the first steps in a basic DPP sampling algorithm is
to estimate the marginal probability for each individual item i € Y. The first
item for the sample set is then selected with probability proportional to these

marginals.

* Conditioning: As with marginalization, being able to condition on the inclu-
sion of an item i € Y is important to the efficiency of sampling algorithms.
Independent of its use in sampling though, conditioning can easily be seen to
have practical importance. Recall for a moment the product recommendation
application from Section 1.1, and suppose that we are presented with a cus-
tomer who already has several items in their cart. To recommend additional

items, it makes sense to condition on the items already selected.

* Likelihood maximization: For some subset selection tasks appropriately-
weighted feature vectors are readily available and can be used to form a feature
matrix B, from which we can compute a DPP kernel L = B" B. However, in
most cases it is not known up front how important each feature is. Instead,
we often have access to indirect evidence of feature importance, in the form
of examples of “good” subsets. Leveraging this information to learn feature
weights, or to infer the entries of the kernel matrix L directly, can be done by
maximizing the likelihood of the “good” subsets. The result is a kernel that

can be used to find good subsets for related subset selection tasks.

e Normalizing: Being able to compute set goodness scores that all fall into the

[0, 1] range is useful for many probabilistic modeling tasks. For instance, nor-

9

2 .‘.‘:g.::" .:.30 o .0..:..0.. =.0 : o..: .' ".' ° .0.0. :.O.... ... o...o

0@ ..000: .000..0 o..: o °. ° %, .:o. ‘o:.'
T LR N KIS SR

.“ $°° ..’o : ..;% * .o.o.'..o. ° o0 .o:. .o... .o
) ° ° o

'0‘ ° .‘. ;. .‘ :‘ ° '... .. :o ° “:.. .: :0: o %o :
o7 o l’:’.;‘ * ..°‘ L/ °d :.:'..o ® oo ' .: : K

‘.’.‘ 0% %% Y ° D ° b *°e o Ky .o. S

All points Independent sample DPP sample DPP (approx) MAP

Figure 1.3: From left to right: A ground set of N points; sampling each point inde-
pendently with probability $; sampling from a DPP with a Gaussian kernel; applying
a DPP MAP approximation algorithm. The DPP sample exhibits greater diversity
than the independent sample, but the DPP MAP approximation is the most diverse.

malization makes it easy to compare two different DPPs, which is necessary

for likelihood maximization.

1.5 'THESIS CONTRIBUTIONS

DPPs can typically be efficiently normalized, marginalized, conditioned, and sam-
pled. Table 2.1 in the next chapter gives the exact time complexities, but roughly
these operations require time cubic in the number of items, N, or features, D, of
these items: O(min(N?, D?)) time. Unfortunately, there are some practical settings
where cubic time is too expensive. For example, recall the document summarization
task from Section 1.1. If the documents we wish to summarize consist of all the New
York Times articles from the past year, then the number of sentences N will be in
the millions. Moreover, if we use the vocabulary of these articles as the feature set,
then the number of features D will be (at least) in the tens of thousands. Exact nor-
malization, marginalization, conditioning, and sampling algorithms cannot handle
data of this size. Thus, in this thesis we explore approximations for the setting where
both NV and D are large.

Besides the quantities that can be computed exactly for moderate N and D, there
are important inference operations for which the expressivity of the DPP causes us
to pay a higher price. We focus on two of these in this thesis. The first, MAP esti-
mation, is known to be NP-hard. Figure 1.3 illustrates for a simple example in two

dimensions how the DPP MAP can significantly differ from a DPP sample. Given

10

that sampling can sometimes be a poor approximation to the MAD, investigating
other approximation methods is vital to making DPPs useful. A second more com-
plex inference task we consider is likelihood maximization, which is conjectured to
be NP-hard. This means that to learn a DPP that puts as much weight as possible
on observed “good” subsets, we must rely on local optimization techniques.

In this thesis, we seek to better address all three of these hard problems: the large-
N, large-D setting, MAP estimation, and likelihood maximization. It might seem
easier to skirt these issues by switching to a simpler model than the DPP—clearly,
given all of the references in Section 1.1, there are many non-DPP-based subset
selection methods to choose from. However, experimental results, such as those in
Sections 4.4.4, 5.6, and 6.7, suggest that sticking with the DPP paradigm is often the

better choice. The primary contributions of this document are summarized below.

* Chapter 2: We review the basic properties and representations of DPPs. For

the core inference tasks, we survey algorithms and hardness results.

* Chapter 3: We discuss several useful DPP variants: k-DPPs, structured DPPs,
Markov DPPs, and continuous DPPs. Several of these variants are relevant to

the results in later chapters.

 Chapter 4: We analyze the impact of randomly projecting features down to a
lower-dimensional space and establish a bound on the difference between the
resulting DPP and the original. We illustrate the practicality of the projected
DPP by applying it to select sets of document threads in large news and research

collections.

e Chapter 5: We build on submodular maximization techniques to develop
an algorithm for finding the DPP MAP problem with a multiplicative ;-
approximation guarantee. We validate the proposed algorithm on a political

candidate comparison task.

* Chapter 6: We derive an expectation-maximization (EM) algorithm for learn-
ing the DPP kernel, motivated by the generative process that gives rise to DPP
sampling algorithms. We show its superiority relative to projected gradient

ascent on a product recommendation task.

11

* Chapter 7: We recap the innovations from the preceding chapters, summariz-
ing the thesis contributions. Lastly, we discuss avenues for future work in the

domain of approximate inference for DPPs.

12

DPP Basics

This chapter discusses the basic properties, algorithms, identities, and hardness re-
sults associated with DPPs. For additional background, references to mathemat-
ical surveys, the use of DPPs as models in physics (e.g. for fermions), theoretical
point processes that are determinantal (e.g. edges in random spanning trees, non-
intersecting random walks), proofs of many of the theorems stated in this section,

and a list of related point processes (e.g. Poisson, hyperdeterminantal), see Kulesza
(2012).

2.1 GEOMETRIC INTERPRETATION

Section 1.2 described the connection between determinants and volumes of par-
allelotopes. To sharpen those intuitions, in this section we provide proofs for the
associated theorems. First, for the case of the 2 x 2 determinant, then for the more

general N x N case.

Proof. (Of Theorem 1.1.) This is a straightforward application of the “base x height”

13

formula for the area of a parallelogram. Let B; serve as the base. Then:

area = || B,|2 x || proj, , (B2 . 2.1)

where proj , (-) projects to the subspace perpendicular to B;. Using the Pythagorean

theorem to re-write this projection:

| proj, s, (By)IE + Il proj, 5, (B))I3 = 1313 (2.2)
| proj, s, (Bi)llz = \/IIBylI3 — Il proj 5, (B))II3. (2.3)

Now, consider the basis formed by the vectors constituting the columns of a matrix
A. According to Meyer (2000, Equation 5.13.3), the matrix Py = A(ATA)*AT
projects to the vector space spanned by those columns. Applying this with B; as A:

: Try\-1pT BB
ProJHBi(Bj) = Bi(B; B;)” B, B; = A Tmbi- (2.4)
2

Combining Equations (2.3) and (2.4), and squaring the area:

BB |
area? = 1513 15513 - | £ 5, 25)
51571,
BB - 1Bl g g 2 2.6
= BB - 157 26)
~ IBIBIBIE - | BRI B, 27)
~ IBI3IB,IE - (BT B). 29

where Equations (2.6) and (2.7) follow from the fact that norms are homogeneous
functions, which means that scalars such as || B/ B;||> and B; B; inside a norm are

equivalent to powers of these scalars outside the norm.]

We now show the derivation of the more general determinant-volume relation-

ship for N dimensions.

Proof. (Of Theorem 1.2.) We proceed by induction on N. For N = 1, volume
is length. The length ||Bi]]; is trivially the square root of the 1 x 1 determinant
det(B] B;) = B{ B;. Now, assuming the theorem is true for N — 1, we will show
that it holds for N.

14

Write By = Bl + Bf:, where Bl is in the span of {By,..., By_,} and B is
orthogonal to this subspace. Such a decomposition can be found by running the
Gram-Schmidt process on the B;. Let w be weights such that: B]”V =w B +...+
wy—1Bn_1. Then define the corresponding elementary row-addition transformation
matrices, identity matrices with w; added to entry (i, N): T, n(w;) = I + Lyw;1y,
where 1; indicates an N x 1 vector with zeros in all entries except for a one in the ith.
Let B be identical to B, but with By replaced by Byx. We can relate B to B via the
elementary transformation matrices: B = BT} y(w;) ... Tn_1n(wy_1). Taking the
determinant of B' B, these transformations disappear; the determinant of a product
decomposes into individual determinants, and the determinant of an elementary
transformation matrix is 1. Thus, det(B'B) = det(B"B). Writing out the new
product BT B:

BB = < BlT:Nngl:N—l BINFIBJJ_/ > . (2-9)
B]J\} Bin-a B]J\‘, B]J\‘,

. . . T
The orthogonality of By means that B] y_; By is all zeros, as is By Bi.y—1. Thus

the determinant is:
det(BTB) = det(By_,Bi.n_1) B Bs:. (2.10)

By the inductive hypothesis, the first term here is the squared volume of the

(N — 1)-parallelotope defined by By.x_;. Letting By.y_; serve as the base of the

N-parallelotope defined by B, the height component of the “base x height” vol-

ume formula is ||By||2. This is exactly the square root of the second term above,
LT pL

B B,]

2.2 INFERENCE

This section provides background on various common DPP inference tasks. The

complexity of these tasks is summarized in Table 2.1.

2.2.1 NORMALIZING

The definition of a DPP given in Equation (1.3) omits the proportionality constant

necessary to compute the exact value of P, (V). Naively, this constant seems hard to

15

Task Runtime

Normalizing O(min{N*, D“})
Marginalizing O(min{N*, D* + D*k})
Conditioning For exclusion: O(N¥);

For inclusion: O(min{N%“, D¥ + D?k? + k*})
Given L’s eigendecomposition: O(Nk?); else:

Sampling O(min{N*“ + Nk?, D* + NDk? + D2k, ND?k})
Finding the mode NP-hard, no PTAS
Maximizing likelihood Conjectured to be NP-hard

Table 2.1: Complexity of basic inference tasks. The size of the DPP’s ground set is IV,
and w denotes the exponent of matrix multiplication. If each item in the ground set
is associated with a feature vector (such as the B; of Section 1.2), then D denotes the
vector’s length. We assume D < N. For marginalizing, conditioning, and sampling,
k is the size of the set marginalized, conditioned on, or sampled, respectively.

compute, as it is the sum over an exponential number of subsets: 3.,/ det(Ly).
Fortunately though, due to the multilinearity of the determinant, this sum is in fact
equivalent to a single determinant: det(L + I). This is a special case of Theorem 2.1
for A = (.

Theorem 2.1. Forany A C Y:

Y det(Ly) =det(L + I), (2.11)
Y:ACYCY
where 15 is the diagonal matrix with ones in the diagonal positions corresponding to

elements of A = Y \ A, and zeros everywhere else.
Proof. See Kulesza (2012, Theorem 2.1).]

Typically, a single N x N determinant for a PSD matrix is computed by tak-
ing the matrix’s Cholesky decomposition. This decomposition re-expresses a PSD
matrix, such as L or L + I, as the product of a triangular matrix and its transpose:
L+ 1 =TT". The determinant can then be computed as the square of the product
of T’s diagonal elements: S_~ T2. Naive algorithms can compute the Cholesky de-
composition in £ N? operations (multiplications). More nuanced algorithms exhibit

improved performance for large N. For example, Bunch and Hopcroft (1974) show

16

that the complexity of triangular factorization is identical to that of matrix mul-
tiplication. Building on the Strassen matrix multiplication algorithm, they obtain
Cholesky decompositions in time < 2.45N87 ~ 2.45 N>897 (Bunch and Hopcroft,
1974, Final sentence of Section 4). This makes their algorithm more efhicient than
the naive approach for N ~ 31,000 and above. While there are matrix multiplica-
tion algorithms that are asymptotically faster than Strassen’s, these are not used in
practice. For instance, the Coopersmith-Winograd algorithm has a complexity of
O(N?375), but the big-O notation hides much too large of a constant coefhcient for
this algorithm to be practical. In analyzing the complexity of algorithms presented
in this thesis, we will use w to denote the exponent of whatever matrix multiplication

algorithm is used. For practical purposes though, think of w as roughly 3.

2.2.2 MARGINALIZING

Just as the probability of a particular set, P,(Y = Y), is proportional to a sub-
determinant of a kernel L, the probability of the inclusion of a set, P(Y C Y),

depends on the sub-determinant of a kernel closely related to L.

Theorem 2.2. For a DPP with kernel L, the matrix K defined by:

K=LL+D) ' t'=I1—-(L+1)"! (2.12)

has minors satisfying:
PY CY) = det(Ky) . (2.13)
Proof. See Kulesza (2012, Theorem 2.2).]

We can also invert Equation (2.12) to express L in terms of K:
L=K(I-K)'=(I-K)'-1. (2.14)

We will refer to the matrix K as the marginal kernel. From Equation (2.13), two
properties of K are immediately obvious: first, since marginal probabilities must be
non-negative, K must be PSD; second, since marginal probabilities must be < 1,
I — K must be PSD. An equivalent way of stating this second condition is to say

that K’s eigenvalues must be < 1. Examining the eigendecomposition of K and L

17

further clarifies their relationship. They share the same eigenvectors, and K squashes

L’s eigenvalues down to the [0, 1] range:

N N
L=VAV' = Z \ivv, K = Z : ii)\ v, | (2.15)
i=1 i=1 :

where v; is the ith column of the eigenvector matrix V.

Since K and L each contain all of the information needed to identify a DPP, we
can use either one as the representation of a DPP. In fact, given K it is actually not
even necessary to convert to L to obtain the probability of a particular subset. As

shown by Kulesza (2012, Section 3.5), we can write:
PuY = V) = | det(K — I)]. (2.16)

The redundancy of K and L comes with one caveat though: L does not exist if any of
K’s eigenvalues are exactly 1. This is clear from Equation (2.14), where the inverse is
incomputable for K with an eigenvalue of 1; an eigenvalue of 1 for K would imply
an eigenvalue of co for L. As will be made clear by the sampling algorithms though,
as long as some non-zero probability is assigned to the empty set, K’s eigenvalues
will be < 1.

In terms of the complexity of converting between L and K, if this is done using
Equations (2.12) and (2.14) then the dominating operation is the inversion. The
naive algorithm for matrix inversion runs in time 2N?. Strassen’s matrix multiplica-
tion algorithm runs in time < 4.7N log, 7 (Bunch and Hopcroft, 1974, Paragraph 2 of
the introduction) and can be used to compute a matrix inverse in time < 6.84N'°87
(Bunch and Hopcroft, 1974, Final sentence of Section 4). This approach is more effi-
cient than the naive one for N &~ 600 and above. If instead we convert from L to K by
computing an eigendecomposition, this tends to be slightly more expensive. While
asymptotically (as N — o) it has the same complexity as matrix multiplication, the
algorithms that achieve this complexity are not practical unless IV is extremely large.
In practice, we instead rely on algorithms such as Lanczos to convert L or K to a
similar tridiagonal matrix, then apply divide-and-conquer algorithms such as those
described in Gu and Eisenstat (1995) to compute the eigendecomposition of this
matrix. (For real, symmetric matrices this is faster than relying on QR decomposi-
tion algorithms.) The overall complexity for computing the eigendecomposition of
L or K is then ~ 4N?.

18

2.2.3 CONDITIONING

Conditioning on the inclusion or exclusion of a subset is also an easy task for DPPs.
In fact, the class of DPPs is closed under these conditioning operations, which means
that it is possible to write the resulting set probabilities as a DPP with some modified
kernel L such that P (Y =Y) = det(L})/ det(L' +I). Formulas for these modified
kernels are given in Table 2.2. We use L* to denote the kernel conditioned on the
inclusion of the set A and L™ to denote the kernel conditioned on the exclusion
of A. The (N — |A]) x (N — |A|) matrix Lz is the restriction of L to the rows and
columns indexed by elements in Y \ A. The matrix I is the diagonal matrix with
ones in the diagonal entries indexed by elements of Y\ A and zeros everywhere else.
The (N — |A|) x |A| matrix L 4 consists of the [A] rows and the A columns of L.

For |A| = k, the complexity of computing these conditional kernels is:

» L4 K“: Equation (2.18) requires an N x N matrix inverse, which is an O(N*)
operation. Equation (2.20) is dominated by its three-matrix product, an

O(N?k) operation. Formulas for K have the same complexity as the L* ones.
» L™4: Equation (2.19) simply requires copying (N — k)?* elements of L.

* K4: Equation (2.22) requires an (N — k) x (N — k) matrix inverse, which is
an O((N — k)“) operation.

The formulas in Table 2.2 can also be combined to produce kernels conditioned
on both inclusion and exclusion. For instance, including the set A™ and excluding

A°Ut the corresponding conditional kernel is:
LAinﬁAout _ ({Lw_i_[ﬁ]@)—l —T. (217)

Equations (2.18) and (2.21) are derived in Kulesza (2012, Equation 2.42,
2.45). Equation (2.19) follows immediately from the definition of a DPP, and
Equation (2.22) from the application of the L-to-K conversion formula of Equa-
tion (2.12). We derive Equations (2.20) and (2.23) in Lemmas (2.4) and (2.5).
These derivations rely upon the following identity.

Definition 2.3. Schur determinant identity: For a (p + q) X (p + q) matrix M

19

Inclusion: ACY Exclusion: ANY =0

A L
Prob. e
((L+1x)7x) -1 (218) L (2.19)
Lzy—Lzaly'Lyz (2:20)
K4 K™
Marginal Prob. | ; _ (L+ 1) "4 (2.21)

I—(Ly+ D" (2.22)

Ki— KgaK;'Kyz (2.23)

Table 2.2: Formulas for computing DPP kernels conditioned on the inclusion or
exclusion of the set A C Y.

decomposed into blocks A, B,C, D that are respectively p x p, p X q, ¢ X p, and q X q:

_| 4B (2.24)
cC D
the determinant of M can be written in terms of the blocks:
det(M) = det(D)det(A — BD'C). (2.25)

Given this identity, we can now derive Equations (2.20) and (2.23).
Lemma 2.4. For a DPP with kernel L, the conditional kernel L* with minors satisfying:

A
P(Y:YUA|AQY):% (2.26)

onY C Y\ A, can be computed from L by the rank-|A| update:
LA =Lz—Lz,Li'L,z, (2.27)
assuming that the inverse L} exists.

Proof. Conditioning on A means normalizing only by sets Y’ that contain A:

det(LyUA)
Z dCt(Ly/) ’

Y"ACY'CY

PLY =YUA|ACY) = (2.28)

20

Suppose, without loss of generality, that the items we are conditioning on are the
last ones: A ={N — |A|+1,...,N}. Then L decomposes into blocks:

p=| *a laa (2.29)
Lyz La
and by Schur’s identity we have that:
dCt(L) = dCt(LA) det (Lg — LAALzlLA,g) . (230)

Let L' denote the matrix Ly — Lz 4,L,'L, 5. Then applying Schur’s identity to the

matrix Lp, where B is any set such that AN B = (), we have:
det(Lpua) = det(La)det (Lp — LpaLy'Lag) = det(La)det (L) . (2.31)
This allows us to simplify Equation (2.28). The numerator can be written:
det(Lyya) = det(L4) det(LY). (2.32)

The normalizing term can similarly be simplified:

> det(Ly) =) det(La)det(Lin) (2.33)
YACY'CY Y ACY'CY
=det(Ly) > det(Lin,) (2.34)
YACY'CY
=det(La) > det(L) (2.35)
Y Y'CY\A
= det(L,) det(L' + 1), (2.36)

where the final equality follows from Theorem 2.1. Plugging this back into Equa-
tion (2.28):
det(L,) det(L},) det(LY)

Puly =YUAlACY) = det(La)det(/ + 1) det(L' +1) (2.37)

]

Lemma 2.5. For a DPP with marginal kernel K, the conditional marginal kernel K*

with minors satisfying:
PYCY |ACY)=det(K{}) (2.38)

21

onY C Y\ A, can be computed from K by the rank-|A| update:
K*=Ky— Kz, K{'K, x, (2.39)
assuming that the inverse K| exists.

Proof. By the definition of conditional probability:

PYCY,ACY) det(Kyua)

PYCY|ACY)= PACY) det(Ky)

(2.40)

Just as in Lemma 2.4, for any set B such that AN B = 0, application of Schur’s

identity yields an expression for the determinant of Kp4:
det(Kpua) = det(K 1) det(Kp), (2.41)

where K" = Kz — K3 4K 'K, 7. This means that Equation (2.40) simplifies to:

det(K4) det(K3)

PYCY|ACY)= det(K)

— det(K2). (2.42)

[]

2.2.4 SAMPLING

Sampling algorithms to draw Y ~ P;, rely on the eigendecomposition of L (or K).
They are based on the fact that any DPP can be written as a mixture of elementary

DPPs, where the mixture weights are products of L’s eigenvalues.
Definition 2.6. A DPP is elementary if its marginal kernel’s eigenvalues are all € {0, 1}.

An elementary DPP is simpler than a general DPP in that it only places proba-

bility mass on sets of a fixed size.

Lemma 2.7. Under an elementary DPP with k non-zero eigenvalues, the probability
of Y =Y is zero for all Y where |Y| # k.

Proof. See Kulesza (2012, Lemma 2.3).]

22

Let V be a set of orthonormal vectors. Let V7 indicate selection of the columns
. J
of V that correspond to the indices in a set J. We will write V" to denote an

elementary DPP with marginal kernel KV”:

= v =V/(V)T, PV (Y CY) =det(KY). (2.43)

jged

Given this notation, we can now express Py, as a mixture of elementary DPPs.

Lemma 2.8. A DPP with kernel L that eigendecomposes as 3~ | \ivv]

7 2

is equal to

the following mixture of elementary DPPs:

s
PLY =Y) = Z PVJ(Yy (1 1 +J/\A) : (2.44)
J:JC{1,...,.N} Jijed T jiggd J

Proof. See Kulesza (2012, Lemma 2.2) for a proof that:

1 ;
P(Y=Y)=— PV(Y =Y i 2.45
Y =Y)= iz D {Z} v=nlls- e

Rewriting det(L + I) = [T, (A + 1) and pushing this into the . summation:

J p 1
PLY =Y) = Z PY (Y:Y)H 1+j)\, H 14N\ (2.46)
J:JC{1,...,N} jijed T jiied J
Since 1 — 1—)0:>\ = A , the result is obtained.]

This mixture decomposition suggests a two-step sampling algorithm for DPPs.
First sample a subset of the eigenvectors, V" by including vector j with probability

- +/\ Algorithm 1, due to Hough,
Krishnapur, Peres, and Virdg (2006), fleshes out this two-step procedure. Assuming
that the eigendecomposition of L is given as input, then the most expensive part of
the algorithm is in the second step, where we modify V' such that it is orthogonal
to the indicator vector e,,. 'This requires running the Gram-Schmidt process, an
O(Nk?) operation. Overall, that makes Algorithm 1’s runtime O(NE?).

It is possible to improve this runtime by avoiding the V' updating. More con-

cretely, on each iteration we can lazily apply a simple conditioning formula to the

23

Algorithm 1: O(Nk?) DPP Sampling

Algorithm 2: O(Nk?*) DPP Sampling

1: Input: eigendecomp. VAV of L 1: Input: eigendecomp. VAV of L
2: J 0 2: J<« 10

3: forj=1,...,N do 3: forj=1,...,Ndo

4 J <+ JU{j} with prob. 4 4 J 4+ JU{j} with prob. 2%
50 V<V, 50 V=V,

6: Y <+ () 6: fori=1,... N do

7: while |Y| < |J| do 70 2 Y pey V(1)?

8: fori=1,...,N do 8 Y « 0

9: Zi e Y pey V(1) 9: while |Y| < |J| do
10: Select y; with Pr(y;) = ‘J‘Z_ylm 10: Select y; with Pr(y;) = ‘J‘Z;”le
11: Y« YU{y} 11: Y« YU{y}
12: j ¢ argmax, V,, 122 1y < VV,]
132 w<V,; 13 forj=1,...,]Y|—1do
14: V + V{T} 14: Tly| < Ty| — :j((z;; f
15: V«V-— vj(lyi)wvyi,: 15: Z 4z — Z—;T‘Qy‘
16: Gram-Schmidt(V) 16: Output: Y '

17: Output: Y

Figure 2.1: Two DPP sampling algorithms, both based on the elementary DPP
decomposition of L. The slower algorithm computes an orthonormal basis for the
subspace V' orthogonal to e, for each point selected. The faster algorithm relies on
lazy updates of the marginals based on a K'-conditioning formula.

24

diagonal of the elementary DPP’s marginal kernel. Algorithm 2 outlines this ap-
proach. The first step, the selection of J, is the same as in Algorithm 1. The second
step only requires O(Nk?) time though. To prove the correctness of Algorithm 2,

we rely on the following corollary and lemma.

Corollary 2.9. Given a marginal kernel K, the conditional marginal kernel K1, with
minors satisfying P(Y C Y |i € Y) = det(K{™), can be computed from K by the rank-

I update:

. 1
O S N
K= kg = g Rl

assuming K;; # 0. The notation Key, indicates the vector composed of the ith column of

(2.47)

K, without its ith element.
Proof. 'This follows directly from Lemma 2.5 with A = {i}.]

Lemma 2.10. Let V. € RN** be the eigenvectors of an elementary DPPs marginal
kernel: K = VV'T. LetY C Y be size-k and arbitrarily order its elements [y, . . ., yx).
Use Y, to denote the subset {y,, ..., yi}, withYy = 0. Then we can express the (s,t) entry

of the conditional marginal kernel as follows:

|Yf‘ KYJ'—IKYJ'—l
Y, syj By,
Ky = Kga— Z KT”]) (2.48)
=1 viyi
where K¥* is the marginal kernel conditioned on the inclusion of Y;.

Proof. We will proceed by induction on ¢. For ¢ = 0 the statement of the lemma
reduces to K%, = K. This is trivially true, as the original marginal kernel is already
conditioned on the inclusion of the empty set. For the inductive step, we assume
the lemma holds for ¢ — 1 and show that this implies it is also true for ¢. From

Corollary 2.9 we have the following expression for K:

Yoo1 7-Ye1
Ky, K,

K = Ky — = (2.49)
Kypy,
Moving the K}/ term to the lefthand side yields:
KZZAKYZA
K;;Z _ K;;vffl — _ Ye wijé) (2‘50)
Kyzyz

The righthand side here is exactly the same as the difference between the ¢ and ¢ —1

cases in the statement of the lemma.]

25

We can now prove the correctness of Algorithm 2.
N T

Theorem 2.11. Given the eigendecomposition of a PSD matrix L = Y, hvv,/,
Algorithm 2 samples Y ~ Py.

Proof. Lemma 2.8 establishes that the mixture weight for elementary DPP PV is:

1 ; AJA' 11 (1_ 1?&_) | 2.51)

jiied T e

The first loop of Algorithm 2 selects V7 with exactly this probability. Thus, the
first loop of Algorithm 2 selects elementary DPP PV with probability equal to its
mixture component. Line 5 sets V = V7, and all that remains to show is that the
rest of the algorithm samples Y ~ PV. In what follows, we will use K to refer to the
marginal kernel of the selected elementary DPP.

Asin Lemma 2.10, let Y; be the set {y;, ..., y,}. Thatis, the items selected during
the first ¢ iterations of Line 9’s while-loop. First, by induction on |Y|, we show that at
Line 15 the variable 7y is equal to K. };'/Ty'l‘l In other words, we show that ry| is the
yjv|th column of the marginal kernel conditioned on inclusion of {yi,...,yy|-1}
For the base case, [Y'| = 1, the result is immediate; Line 12 sets r; to K. ,,, and the
for-loop at Lines 13 and 14 does not change it. For the inductive case, |Y| = ¢, we
assume 7; = K.;; ' forall j < ¢— 1. Line 12 sets r, = K.,, and Line 13’ for-loop
updates r, exactly according to Equation (2.49) from Lemma 2.10. Thus, at Line 15
we have: r, = K}Z;l, as desired.

Given this invariant on 7|y|, we now show that at Line 10 the variable z; is always
equal to the marginal probability of selecting item i, conditioned on the current
selection Y. That is, it is always the diagonal entry of the conditional marginal
kernel: z; = K. We again proceed by induction on |Y|. For the base case, Y = 0,
the marginal probability of an item i is K;. Since Line 7 initializes z; = V;:Vg = K,
the base case is trivially true. For the inductive case, [Y'| = ¢, the inductive hypothesis
says that z; = K" at Line 10 during the (th execution of the while-loop. Then it is
clear that Line 15 updates z; by applying Equation (2.49) for s = t. Thus, we have
2z = K, at Line 10 during the next iteration of the while-loop, as desired.

Given this invariant on z;, all that remains to show is that the probability of

selecting element 7 to be the ¢th item in Y is z;/(k — ¢+ 1), as in Line 10. According

26

to Lemma 2.7, Y must have |Y'| = |J] at the end of the algorithm. Thus, when ¢ —1
items have been selected, there are still £ — ¢+ 1 ways in which item i could be added
to the final selection: it could be added as element ¢, or ¢ + 1, etc. Thus, Line 10

correctly normalizes z; to account for all of these possibilities.]

2.2.5 MAP ESTIMATION

Up to this point each of the inference tasks described—normalizing, marginalizing,
conditioning, and sampling—can be performed in roughly O(N?) time. The task of
finding the MAP (or mode) of a DPP is more difficult. In fact, it is known to be
NP-hard. This was shown by Ko, Lee, and Queyranne (1995), whose work focuses
on the equivalent problem of selecting a subset of Gaussian random variables such
that the entropy of the selected set is as large as possible. They start by assuming that
the covariance matrix ¥ of the variables is known. Based on ¥, the entropy of any

subset Y of the variables can be computed according to:
H(Y) = %m (27e)" ! det(Sy)) - (2.52)

For a fixed set size, [Y| = Fk, this is proportional to logdet(Zy). Ko et al. (1995)
reduce the NP-complete “stable set” problem to the problem of maximizing
logdet(Xy) subject to the cardinality constraint |Y| = k. Specifically, the stable
set problem asks: given an N-vertex graph G and an integer £ < N, decide whether
G contains a stable set with k vertices. A stable set is defined as a subset S of G’s
nodes such that there are no edges between any of the nodes in S. The transforma-
tion of this graph problem into a determinant problem is accomplished by defining

a PSD matrix based on the graph’s edges:

3N ifi—j,
Yy =141 if(i,j) isan edgein G, (2.53)
0 otherwise .

Ko et al. (1995) show that finding a size-k minor of value greater than (1 —
(3N)~2)(3N)* corresponds to finding a stable set of size k. Thus, the problem
of finding the largest size-k determinant of a PSD matrix is NP-hard, even if the
matrix only has entries with values in {3N, 1,0}. Ko etal. (1995) extend this reason-

ing to also show NP-hardness in the unconstrained setting, which is equivalent to

27

the problem of finding the mode of a DPP with kernel . They also experiment with
a branch-and-bound search algorithm for finding the best subset. It relies primarily

on the eigenvalue interlacing property to define an upper bound.

Definition 2.12. Eigenvalue interlacing property: Let M be an N x N symmetric
matrix. Denote the r X r leading principal submatrix of M as M|[r] and its eigenvalues as
M(Mr]) < Xa(M[r]) < ... < A\(M[r]). Then for any two matrices M|r] and M|r + 1],
and any index i € {1,2,...,r}, the following inequality holds:

Ni(Mr+1]) < N(Mr]) < \ipa(Mr+1]). (2.54)

In experiments, the branch-and-bound method is shown to be capable of finding
optimal subsets for problems of size up to N = 75, but takes a relatively long time to
do so. The authors state: “In all of our experiments, the time spent by the heuristic
is negligible [compared to the total runtime of the algorithm].” The methods we
consider in Chapter 5 run in time comparable to Ko et al. (1995)’s “negligible”
heuristics though.

The more recent work of Civril and Magdon-Ismail (2009) strengthens the hard-
ness results developed by Ko et al. (1995). In particular, they show that no PTAS
exists for the problem of finding a maximum volume submatrix. That is, their proof
precludes the existence of an algorithm that, given any error tolerance ¢, produces a
solution within a factor 1 — € of optimal. Kulesza (2012) adapts this proof to show
that an approximation ratio of § 4-¢ is NP-hard for the problem of finding the mode
of a DPP.

Theorem 2.13. Let DPP-MODE be the optimization problem of finding, for an N x N
PSD matrix L indexed by elements of Y, the maximum value of det(Ly) over allY C Y.
It is NP-hard to approximate DPP-MODE to a factor of 5 + e.

Proof. See Kulesza (2012, Theorem 2.4).]

For the cardinality-constrained variant of the problem where |Y| = £, Civril
and Magdon-Ismail (2009) propose an approximation algorithm guaranteed to find
a solution within a factor O () of optimal. This algorithm is exactly the greedy
algorithm of Nemhauser, Wolsey, and Fisher (1978), for the function logdet. In
Chapter 5 we discuss this algorithm in more detail and compare it empirically with

our own MAP estimation algorithms.

28

2.2.6 LIKELIHOOD MAXIMIZATION

Consider the problem of fitting a DPP to data. For probabilistic models, one stan-
dard way to find model parameters is to maximize the log-likelihood of the data. In
the most unrestricted setting, the model parameters for a DPP are the entries of L
or K. Given data consisting of n example subsets, {Y1,...,Y,}, where ¥; C Y for all

i, the log-likelihood maximization problem is:
mLaXZ[logdet(Lyi) —logdet(L +1I)] s.t. L= 0. (2.55)
=1

Unfortunately, this objective is not concave. The function f(M) = logdet(M) is
concave for PSD M, implying that the log-likelihood is a difference of two concave
functions, but this does not make log-likelihood overall concave. Applying Equa-
tion (2.16) gives a form of the log-likelihood objective in terms of K

mKaX;log(!dedK —Iy)) st K=0,[—K=0. (2.56)

This looks simpler, but it is not concave either. The matrix K" — I3, can be non-
PSD, and logdet is only concave when restricted to the PSD cone. No algorithm is
currently known for efliciently finding a global optimum of DPP log-likelihood. In
Chapter 6 though, we derive an expectation-maximization algorithm to find a local
optimum.

More restricted likelihood maximization settings are also of interest. For instance,
instead of allowing the entries of L or K to take on arbitrary values, suppose we
have a fixed set of kernels 51, ..., S, and require that L be a weighted sum of these.

Maximizing likelihood under this constraint is conjectured to be NP-hard.

Conjecture 2.14. Given a sequence of N x N PSD kernels S, ..., S,, indexed by the
elements of Y, and a sequence of subsets Y1,...,Y, of Y, finding @ € R", 6 > 0 to
maximize:

n

L(0) = Z[logdet(S(O)yi) —logdet(S(0) + I)] s.t. S(0) = i 0;5; (2.57)

i=1

is NP-hard.

29

Proof. Kulesza (2012, Conjecture 4.1) provides a partial reduction of the NP-

complete exact 3-cover problem to this likelihood optimization. [

While restricting L to be a weighted sum of fixed kernels does not make likeli-
hood maximization obviously tractable, there are other, tighter restrictions that do.

We discuss these in Chapter 6.

2.2.7 MAXIMIZING ENTROPY

In addition to likelihood maximization, another common way of fitting a proba-
bilistic model to data is to maximize its entropy, subject to certain feature-matching
constraints. In the case of the exponential family of distributions, maximizing like-
lihood is equivalent to maximizing entropy, subject to the constraint that expected
feature values under the model equal their empirical counts. While such a likelihood-
entropy equivalence is not known to hold for DPPs, maximizing entropy is never-
theless a reasonable strategy for estimating DPP parameters, since it can be justified
from the perspective of minimizing the prior knowledge put into the distribution.

In terms of K, the entropy is:

H(K) = Z |det(K — Iy)|log(| det(K — Iy)]). (2.58)
Y:YQy
Lyons (2003) conjectures that H(K) is concave in K, and numerical simulation
supports this. However, no proof is known.

Maximizing entropy to fit a DPP model is in some ways more difficult than
maximizing likelihood. For instance, no efficient way of exactly computing the
exponential-size sum in the entropy expression is known. While Section 2.2.1 ex-
ploits the multilinearity of the determinant to write), -, det(Ly) as the single
determinant det(L + I), entropy’s multiplication by a log term breaks the linearity.
Thus, in Chapter 6 of this thesis we focus on likelihood maximization and defer

exploration of entropy maximization to future work.

2.2.8 COMPUTING EXPECTATIONS

A more general inference task that also often seems to be difficult for DPPs is com-

puting expected values. Since the distribution defined by a DPP has 2V values,

30

computing expectations naively involves an exponential-size sum. There are a few
interesting quantities for which this sum simplifies though. For instance, the ex-
pected set size can be computed simply by taking the trace of the marginal kernel:
Ey.p, Y]] = tr(K) (Kulesza, 2012, Equation 2.34). But for many other quantities
no exact, efficient way of computing the expectation is known. For instance, the for-
mula for entropy discussed in the previous section is an example of an expectation
that seems difficult to compute. Specifically, it is equivalent to Ey..p, [logPL(Y)].
Likewise, it is not known how to compute the following expectation exactly and

efficiently:
Z dCt Ly . (2 59)

Y:YCY

By, [P(Y)] = det(L + 1)? L)2

Being able to exactly and efficiently compute this quantity would mean we could
normalize a distribution that places probability mass proportional to det(Ly)? on
a set Y. This distribution would be more peaked around high-quality, diverse sets
than the corresponding DPP, which could make it a superior tool for subset selec-
tion. Unfortunately though, even the normalization constant for this distribution
seems difficult to compute exactly. In fact, we can show definitively that one type

of expectation similar to that of Equation (2.59) is #P-hard to compute.
Theorem 2.15. Let L and M be N x N PSD matrices indexed by elements of Y. Then
the expected value:

1
det(L + I')det(M + 1)

EYNPL [PM<Y)] = Z det Ly dCt(My) (260)

Y YCQy

is #P-hard to compute.

Proof. We reduce from the #P-complete problem 1MPERFECT-MATCHINGS (Valiant,
1979, Section 4, Problem 6). The input to this problem is a bipartite graph G =
(U,V, E) with N edges E between the nodes in U and the nodes in V. The output is
the number of matchings of any size.

The reduction is as follows. For the ith edge, let E;; and Ej» denote the nodes
from U and V, respectively. Let the N x N matrix L have entries L;; = 1(E;; = Ej1),
indicating whether edges i and j share the same U-node. Similarly, let Mf;; = 1(E;» =
Ejs), indicating whether edges 7 and j share the same V-node.

31

First, we show that det(Ly) det(My) = 0 whenever Y does not correspond to a
matching. ForanysetY C {1,..., N} withi,j € Y, if E; and E; share an endpoint
then either L.; = L.; or M.; = M. ;. That is, identical endpoints correspond to two
identical columns in L or M. Since the determinant of a matrix whose columns are
linearly dependent is zero, this means that det(Ly) or det(L,y) is zero whenever Y
contains indices of edges with common vertices.

Now we show that det(Ly) det(My) = 1 whenever Y does correspond to a match-
ing. If the indices in Y correspond to edges that all have distinct U-nodes, then
Ly = 0foralli,j € Y wherei # j. Thus, Ly = I and det(Ly) = 1. The same
argument applies to M for distinct V-nodes.

The expectation from the statement of the theorem corresponds to a sum over
all subsets of edges, and we have shown that each term in the sum contributes 1 for
a matching and 0 for a non-matching. Multiplying the expectation by the inverse
of the normalizing term, det(L + I)det(M + I), yields a count of the number of

matchings of any size.]

Despite the negative results for exactly computing expectations under DPPs,
there is of course always the option of approximating. Since it is easy to sample
from a DPD, any of these expectations can be approximated by drawing samples

from P;.

2.3 CLOSURE

The class of DPPs is closed under the operations of scaling, restricting, complement-
ing, and conditioning. This means that for each of these operations it is possible to
write the resulting set probabilities as a DPP with some modified kernel L’ such
that P, (Y =Y) = det(L},)/ det(L' + I). For the conditioning operation, the cor-
responding L’ can be found in Table 2.2. For the other operations, the modified
kernels are given below; see Kulesza (2012, Section 2.3) for proofs. In each setting
we assume that there is a variable Y distributed as a DPP with kernel L and marginal
kernel K.

Scaled kernel: Scaling L by any non-negative constant v results in a related PSD
matrix L, which is a valid DPP kernel. Similarly, scaling K by any v € [0, 1] yields

32

a PSD matrix with eigenvalues in [0, 1], and thus another valid DPP kernel. (Note
though that 7L and vK almost always describe different DPPs.)

Restricted kernel: The restricted variable Y N A, for A C Y is distributed as
a DPD, with marginal kernel K4. The corresponding non-marginal kernel can be
found by applying Equation (2.14): K(I — K4)™ .

Complement kernel: The complement variable Y\ Y is distributed as a DPP,
with marginal kernel K = I — K. With this complement identity, we can also
now express the marginal probability of any partial assignment as a product of two

determinants:

PBCY,ANY =0)=PBCY)P(ANY =0 |BCY) (2.61)
= det(Kp)det(I — K%). (2.62)

2.4 DUAL REPRESENTATION

The normalizing, marginalizing, conditioning, and sampling operations discussed in
Section 2.2 all require time polynomial in N. As N grows large, these operations can
become prohibitively expensive. However, in the case where each item i is associated
with a feature vector B; € RP*!, as in Section 1.2, a simple alternative exists for
reducing runtime complexity. More concretely, we can replace N with D. In settings
where D < N, this results in substantial savings. (In Chapter 4, we discuss the
setting where both N and D are large.)

Let L = B'" B and consider the D x D matrix C = BB, which is also PSD.
We will refer to this matrix as the dual kernel. The eigendecompositions of L and C'
are closely related: their non-zero eigenvalues are identical and the eigenvectors of L

convert to those of C' via the linear map B'.

Proposition 2.16. 7he eigendecomposition of C' is:
o D
C=VAVT =) \oid/] (2.63)
=1
if and only if the eigendecomposition of L is:

L= ED;)\ (%BT@-) (\/%BT@i) ' . (2.64)

33

Proof. See Kulesza (2012, Proposition 3.1).]

By exploiting this eigendecomposition relationship, we can rewrite many DPP
inference operations in terms of C, replacing their N dependence with a D depen-
dence. 'The following subsections give an overview of these reductions. Those that

are not explained in detail here can be found in Kulesza (2012, Section 3.3).

2.4.1 INORMALIZING

DPP normalization can be transformed from an O(N%) operation to an O(D*) op-

eration by applying the identity det(L + I) = det(C + I).

2.4.2 MARGINALIZING

The eigendecomposition of C' takes time O(D¥) to compute. Exploiting Equa-
tion (2.15), which establishes that the eigendecompositions of L and the marginal
kernel K are nearly identical, we can compute any single entry K;; in O(D?) time,
assuming the eigendecomposition of C' is known. Extending this, for a set Y of size
k, the ®&H) entries needed for the submatrix Ky can be computed in O(D?k?) time.
This makes the operation of computing a size-k marginal O(D?k? + k¥).

2.4.3 CONDITIONING

Recall the conditioning equations from Table 2.2. Expressions such as the one for
marginal exclusion, Equation (2.22), K™ = I — (Lz + I)™!, are not particularly
conducive to replacement of L by the dual kernel C. If Ly is full-rank, then |4] is
< D and there would be no savings from using C' in place of L. If on the other hand
L3 is not full-rank, then the addition of the identity matrix in this formula changes
the eigendecomposition of L significantly in ways that cannot be easily translated to
C; the transformation of the eigenvalues is trivial (the identity adds 1 to each), but
the change in the eigenvectors formerly associated with zero eigenvalues is not easy
to characterize.

For other conditioning formulas, such as the one for inclusion of a set A, Equa-

tion (2.20), L* = Ly — Ly 4L,'L , 3, it is more clear how to leverage the dual kernel

34

to improve computational complexity. In this case, the translation from L to L#
can be written as a linear map from B to a new matrix B*. Lemma 2.17 gives the
details. Given B4, the conditional dual kernel C4 is simply B4(B4)T.

Lemma 2.17. If L = B' B, then we can write the kernel conditioned on the inclusion
of the set A as L* = (B*)" B4, where:

Z4 =1 — B4(B)BA)"'B} (2.65)
B* = 7B;. (2.66)

Proof. Substituting B into the formula developed in Lemma 2.4:

LA =Lz— LE,ALZlLA,Z (2.67)
= BIBx— B}Ba(BiBa) BiBz (2.68)
= B (I — Ba(B)Ba)"'Bj) Bx (2.69)
= B;Z"B;. (2.70)

The matrix Z4 is a projection matrix, which implies that it is idempotent: (Z4)? =
zA. Thus, L* = BL(Z*)*B;. Since the Z* matrix is also clearly symmetric, we have
the desired result: L4 = (B4)T B4,]

We could compute B4 and use it to get C* via the product B4(B#)". For small
k and large N though, it is more efficient to compute C* based on the fact that
BABYT = ZACZA. We still have to compute Z4, which takes O(D?k? + k) time.
But then, instead of an O(D?*(N — k)) matrix multiplication, only an O(D*) one is
required. Overall, this means that C* can be obtained in O(D* + D?k* + k) time.

2.4.4 SAMPLING

Recall the two algorithms from Section 2.2.4. The slower one, Algorithm 1, has a
complexity of O(Nk?), where k is the size of the sampled set. Kulesza (2012, Section
3.3.3) shows how to adapt this algorithm to use the dual kernel C'in place of L, with a
resulting complexity of O(N Dk*+ D?k?). To better compare these two complexities,
note that a sample from a DPP will not be larger than the rank of the DPP’s kernel,

35

implying k£ < D. This makes the O(Nk?) of the original algorithm better than the
complexity of the dual algorithm. Still, the dual algorithm might be a better choice
if one does not have the eigendecomposition of L pre-computed. Including the cost
of the initial eigendecompositions in the runtime analysis, we have complexities of
O(N¥ + Nk?) for the original algorithm versus O(D* + N Dk? + D?k?) for the dual
version.

For the faster sampling algorithm from Section 2.2.4, Algorithm 2, the complex-
ity without including the eigendecomposition is O(Nk?), but with the eigendecom-
position it is O(N“ + Nk?). To create a dual variant of this algorithm, we can use
many of the same techniques as Kulesza (2012) applies to create a dual for Algo-
rithm 1. We start by assuming that instead of an eigendecomposition of L, we have
an eigendecomposition of C'. The initial step of sampling the set J does not change,
as C'and L have identical non-zero eigenvalues. To compute the initial z;, we borrow
an O(NDk) procedure that Kulesza (2012) uses to compute the same quantity for
the dual version of Algorithm 1. Given these, all that remains to convert is Line 12
of Algorithm 2. This line, 7y + VVyI:, computes K. ,,. From the dual marginaliza-
tion section, Section 2.4.2, we know that it is possible to compute any single entry

of K in O(D?) time, given C’s eigendecomposition. The exact formula for K, is:

K., = i A (L B%) (LBT@-) (2.71)
Y T i J J : *
j=1)\j + 1)‘j Y \/A_J

Applying this, Line 12 can be re-written as an O(N Dk) operation, where the £ factor

is a result of the fact that the algorithm only needs to sum over selected eigenvec-
tors, not all D. The runtime of the resulting algorithm can be further improved by
noting that the final term in the equation does not depend on y;, and so it can be
pre-computed. Algorithm 3 compiles the modifications described in this section to

summarize the full sampling procedure. The overall algorithm runtime complexity
is O(NDE).

36

Algorithm 3: Dual DPP Sampling

Input: B and eigendecomp. VAV of C
J <0
forj=1,....Ddo

J + JU{j} with prob. ﬁr—g]
fori=1,...,Ndo

2
Zi & D ey <ﬁ@JTB’)
for j € Jdo
Bj < BT@]'
Y « 0
while Y| < |J] do
Select y; with Pr(y;) = \J\iylin
Y « Y U {y}
Ty < Zje] ﬁ (BZI/IA]J) Bj
forj=1,...,[Y|-1do

ri(Yi) .,
ri(y;) " J

—_
M 72

—

Tly| < Tly| —

—
a

_ 12
Z 4+ z = T

Output: YV

_.
!

2.5 QUALITY-SIMILARITY DECOMPOSITION

We introduce in this section a small amount of additional notation common to
most practical DPP work. Specifically, it is standard to separate out notions of item
quality and item similarity. Section 1.2 aliased these two by assuming that each item
i is entirely characterized by a feature vector B; € RP*!. We can decompose B; into
two parts though: its magnitude || B;||2, which represents feature quality ¢;, and its
direction ¢; € RP*!||¢;]|2 = 1, which models item similarity. Defining two N x N
matrices to summarize this information, a diagonal quality matrix @) and a similarity

matrix S, we have:

Bi=q¢i, Qu=aq, Si=0¢ 0;, Lij=aqddjq=QiuS;Qj- (2.72)

37

Given this decomposition, L = QSQ, we can re-write DPP probabilities as a product

of a quality term and a diversity term:

Py =Y) =[]] det(Sy). (2.73)

1:19€Y
For many of the real-world applications we discuss, this decomposition mirrors the
form of the input data. For instance, in the case of image search, the quality of
the ith image may depend on features such as contrast and sharpness that are not
necessarily relevant to judging its similarity to other images. Hence, it is natural to
separate out these quality features to generate a ¢; score, then normalize the other

features to create ¢;.

38

DPP Variants

This chapter discusses recent work that extends the basic DPP model discussed in
Chapter 2 to create new models better suited to various practical settings. We exam-
ine cardinality-constrained and structured variants in detail here, as they will play
a role in later chapters. We also touch on Markov DPPs and continuous DPDs,
though the remainder of the thesis does not contain experimental results related to

those two variants.

3.1 CARDINALITY-CONSTRAINED DPPs

In practice, it is often useful to consider only subsets of a fixed size, &, rather than all
2V subsets of Y. This gives more control over the size of sets produced by DPP algo-
rithms, which is important for two main reasons. First, for ease of use in applications
where a cardinality constraint is standard. For example, document summarization
systems are often limited to producing k-sentence summaries, so that the results are
of a consistent, easily-digestible size. The second main reason that a model restricted
to sets of a fixed size is needed is that it may inherently be a better fit for certain

problems. For example, consider the problem of modeling the locations of spruce

39

trees on a particular plot of land. The resources of the land will most likely dictate
that it can comfortably support approximately some fixed number of trees. Hence,
a model that places substantial probability mass on much larger or much smaller
numbers of trees will be a poor fit.

To address the need for models placing probability mass only on k-sets, Kulesza
and Taskar (2011a) introduced k-DPPs. More concretely, a k-DPP with kernel L

has probabilities:
det(Ly)

Z dCt(Ly/) ’
Y'Y'CY,
Y=k
for Y C Y where |Y| = k, and P}(Y) = 0 otherwise. As with regular DPPs, many

of the inference operations common to probabilistic models can be performed in

PLY) = (3.1)

polynomial time for k-DPPs. We require one additional definition to describe these

k-based algorithms.

Definition 3.1. 7he kth elementary symmetric polynomial on the values Ay, . .., \y is:

er(Ms o Av) = Y IR (3.2)

J:JC{1,...,N}, jij€J

J|=k
For a matrix L with eigenvalues)\, ..., Ay, we will write e;,(\,..., \n) as ex(M).
Moreover, for the restriction to the first v eigenvalues)1, . .., \,, we will write ej,(M).

When the meaning is clear, we will also use €j, as shorthand for e,(M).

While the explicit formula in Definition 3.1 includes an exponential-size sum-

mation, it is possible to compute it efficiently due to the recurrence relation:
efCV = e,]fvfl + ANeiV:ll) (3.3)

Baker and Harwell (1996) exploit this relationship to create a summation algo-
rithm that computes e} and all of the lesser polynomials el ..., ef ; in time O(Nk)
(Kulesza, 2012, Algorithm 7). All of the DPP inference methods can be modified
to perform inference for k-DPPs by exploiting these elementary symmetric polyno-

mials.

e Normalizing: The denominator in Equation (3.1) is equivalent to the elemen-

tary symmetric polynomial e, (L) (Kulesza, 2012, Proposition 5.1).

40

* Marginalizing: For regular DPPs, the marginal kernel K can be computed in
O(N¥) from L. Then each subsequent marginal for a set of size k requires just
O(k¥) time. Unfortunately, for k-DPPs no marginal kernel exists. However,
it is still possible to get the marginal probability of a particular subset A as

follows:

PHACY) = %

(Kulesza, 2012, Equation 5.29). Every marginal requires the computation of

det(La) = ei" 14 (LY)PE(A) (3.4)

a unique conditional kernel L# and its eigendecomposition. Thus, the cost of
computing the marginal probability of a size-k set under a k-DPP is O(N?k +
(N — k)¥). 'This can be somewhat improved for small sets by applying an

alternative formula. For example, for singleton sets we have:
P eY) Z)\ ek W (3.5)

where ;7 (L) = e; (M, ..., A\j_1,\j41,- .-, Aw) is the (k — 1)-order elemen-
tary symmetric polynomial for all eigenvalues of L except \; (Kulesza, 2012,
Equation 5.33). 'This formula requires O(N?k) time to compute, given the
eigendecomposition of L. In fact, since the ;7 are the same for all i, we can

compute all singleton marginals in O(N?k) time.

* Conditioning: Applying the same formulas as in the top half of Table 2.2

yields conditional kernels that can serve as k-DPP kernels.

e Sampling: Only the first part of the regular DPP sampling algorithms, the
selection of the elementary DPP, has to change for £-DPPs. More concretely,
instead of selecting from elementary DPPs of all sizes, it must change to select
only from elementary DPPs of size k. The resulting algorithm (Kulesza, 2012,
Algorithm 8) runs in time O(Nk), assuming the eigendecomposition for L is
given as input. This does not alter the overall complexity of the DPP sampling
algorithms from Section 2.2.4, so the complexity of sampling from a k-DPP

is the same as for sampling from a regular DPP.

* Hard inference problems: All of the operations that were shown or conjec-

tured to be NP-hard for regular DPPs are similarly difficult for £-DPPs. (If

41

iraq iraqi killed baghdad arab marines deaths forces
social tax security democrats rove accounts
owen nominees senate democrats judicial filibusters
israel palestinian iraqi israeli gaza abbas baghdad

pope vatican church parkinson

Jan08 Jan28 Feb17 Mar09 Mar29 April8 May08 May28 Junl7

Feb 24: Parkinson’s Disease Increases Risks to Pope

Feb 26: Pope’s Health Raises Questions About His Ability to Lead

Mar 13: Pope Returns Home After 18 Days at Hospital

Apr 01: Pope’s Condition Worsens as World Prepares for End of Papacy
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers

Apr 18: Europeans Fast Falling Away from Church

Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name

Figure 3.1: A set of five news threads. Above, the threads are shown on a timeline
with the most salient words superimposed; below, the dates and headlines from the
lowest thread are listed. The headlines indicate that the articles in this thread con-
stitute a coherent news story.

switching to k-DPPs made any of these problems easy, then we could simply
iterate over k = 1,..., N to solve the problem for regular DPPs.)

3.2 STRUCTURED DPPs

For some of the applications mentioned in the introduction, the number of items
to choose from is exponential. For example, pose tracking, network routing, and
motion summarization fall into this category, as do variants on the document sum-
marization task. More concretely, consider a variant of the document summarization
task that we will refer to as “news threading”: given a collection of news articles from
a certain time period, select k& news “threads” where each thread covers one coherent
news story and consists of R news articles describing the major events of that story.

Figure 3.1 gives an example of this type of thread set.

42

If there are M news articles, then there are O(M*) possible news threads, and
O(M**) possible size-k subsets of threads. The inference tasks for the corresponding
DPP can be prohibitively expensive even for moderate values of M, R, and k. The
problem under consideration has some structure to it though, in that two threads can
share a common sub-thread. To handle such settings, Kulesza and Taskar (2010)
introduced structured DPPs. Essentially, their work shows that if we require that
common components of threads share quality scores and similarity features, then we
can efficiently handle a ground set of exponential size, N = M*~.

More concretely, let Y be the set of all structures and let y € Y denote a single
structure with R parts {yi,...,yr}. For the news threading example, y would be a
single thread, the set of articles covering the major events of one news story, and the
parts would be individual articles. Finally, define a set of factors F', where each factor
« € F represents some small subset of the parts of a structure. For instance, F' could
consist of singleton subsets where each « is an article, or F' could consist of size-2
subsets where each « is a pair of articles. The key assumption we will make is that
the model decomposes over these factors. Specifically, a structure y is characterized

by quality score ¢(y) and similarity features ¢(y) that decompose as follows:

1¥) =[] w(wa), W) =D daly.)- (3.6)

acF acF
These decompositions are very natural for many applications. Again, considering the
news threading application, suppose that each « is a single article. If the similarity
features for a single article ¢, (y,) are word counts, then the features for a thread are
also word counts, since ¢(y) is simply a sum over y’s factors’ features. Thus, ¢(y) in
this setting has a clear interpretation.

The factors F' can be thought of as defining a graph consisting of two types of
nodes, factor nodes and variable nodes, and an edge connecting each variable node
to the factors in which it participates. As is the case for graphical models, structured
DPP inference algorithms are efficient as long as F’s graph has a low treewidth.
That is, applying the junction tree algorithm (Lauritzen and Spiegelhalter, 1988) to
convert it into a tree graph, the degree of the resulting tree factors is bounded by
some small constant c. A small ¢ is often quite sufficient for interesting models: for
all of the experiments in subsequent sections we have ¢ = 2.

Given the factor graph, all of the standard DPP inference methods can be con-

43

verted into structured DPP inference methods by exploiting the dual kernel C' from
Section 2.4 and the second-order message passing algorithm of Li and Eisner (2009).
Second-order message passing allows us to compute C' itself in O(D*M°R) time
(Kulesza, 2012, Section 6.3.1). Assuming C' is given, the complexities of the various

inference tasks are as listed below.

* Normalizing: By applying the det(C' + I') equation from Section 2.4.1, struc-

tured DPPs can be normalized in O(D*) time.

e Marginalizing: By applying the dual kernel marginalization procedure de-
scribed in Section 2.4.2, any size-k marginal of a structured DPP can be com-
puted in O(D?k? + k) time. We can also compute the marginal of a particular
part y, in O(D*M*R) time (Kulesza, 2012, Equation 6.49).

* Conditioning: By applying the dual kernel conditioning formula developed
in Section 2.4.3, a structured DPP can be conditioned on the inclusion of a
size-k set A in O(D* + D?*k? + k“) time.

e Sampling: Assuming the eigendecomposition of C' is known, a set of struc-
tures can be sampled from a structured DPP in O(D?*k* + DM°RE?) time
(Kulesza, 2012, Algorithm 11).

3.3 MARrkov DPPs

The simplest form of the subset selection task asks only for a single subset. Some
applications though are better described as the sequential selection of multiple sub-
sets. For example, consider another variant of the document summarization task:
each day news outlets publish many articles, and from these we wish to select a few
articles for a user to read. Automatically selecting a set of articles that is not only
itself diverse, but that is also diverse compared to previously selected subsets is a task
of practical importance: the additional between-day diversity allows for greater ex-
ploration of the article space. Affandi, Kulesza, and Fox (2012) address this type of
problem by introducing Markov DPPs (M-DPPs).

More concretely, an M-DPP is a first-order, discrete-time, autoregressive point

process that can be characterized by specifying a PSD matrix L, an initial distri-

44

bution, and a Markov transition distribution. For Y, C Y, Affandi et al. (2012,
Equation 13) define these distributions as:

o . dCt(Lyl)
PY=Y)= gt + D G7)

det(M
PY, =Y, |Y, =Y = dei(fM _YHY)> : (3.8)
Yia

where M is the matrix L(I — L)~'. These particular distributions not only imply that
the individual Y, variables are DPP-distributed, but also that the set union variable
Z,=Y,UY, ; is DPP-distributed as well. Specifically, if the individual variables
have kernel L and marginal kernel K, then Z, has kernel 2/ and marginal kernel 2K'.
It is also possible to analogously define an M-k-DPP over sets of size k. The resulting
union variable distribution is a 2k-DPP, but does not yield Y, that are exactly k-
DPPs. Nevertheless, the diversity at the 2k level implies some diversity at the & level.
Affandi et al. (2012) derive exact and efficient sampling procedures for M-DPPs and
M-k-DPPs. These algorithms essentially combine DPP conditioning formulas with
the standard DPP sampling formulas. The resulting M-k-DPP sampler can select T
sets in time O(T'N® + TNE?).

Experimentally, on the news summarization task described above, the M-k-DPP
does well. It sacrifices a small amount of article quality to produce much more diverse
sets than models that choose solely based on quality. Additionally, compared to a
model that samples from an independent k-DPP at each time step, the M-k-DPP
shows a substantial increase in between-step diversity.

For basic DPPs, learning item qualities by maximizing likelihood is a concave
optimization problem (Kulesza and Taskar, 2011b), which we will discuss in more
detail in Chapter 6. While the basic DPP sampling procedures translate well to
M-DPPs, unfortunately even this most simple of learning procedures does not; the
M-DPP log-likelihood objective is not concave for the quality-learning setting. Nev-
ertheless, Affandi et al. (2012) demonstrate a promising heuristic for learning item
qualities, inspired by standard online algorithms. Their procedure assumes that each
day a user provides feedback by marking the articles that they see as either of interest
or not of interest. From these labels, the quality scores for articles on subsequent days
are adjusted: the parameters associated with quality features for articles of interest

are increased, while those associated with the other articles are decreased.

45

3.4 ConNTINUOUS DPPs

The extension of DPPs to the continuous realm is considered in Affandi, Fox, and
Taskar (2013a), where they propose practical sampling algorithms for the resulting
DPPs. Formally, the discrete DPP sampling algorithm applies to the continuous
case, but computationally it is intractable to have N uncountable. For a continuous
space 2 C R?, L becomes an operator, L : x © — R. The probability density of
a point configuration A C Q is then: Pr(A) o det(L,), where Ly is the |A] x |A]
matrix with entry L(z,y) for each z,y € A.

Despite the fact that N is uncountable, Affandi et al. (2013a) show that it is
possible to sample from P, by adapting the dual sampling algorithm (Kulesza, 2012,
Algorithm 3). The initial step in this algorithm only requires that the number of
features, D, be small, putting no constraint on N. Many continuous kernels are by
nature low-rank, which means that they already have a reasonable D. Many other
high- or infinite-rank kernels can be transformed into low-rank kernels by using a
Nystrom approximation or random Fourier features. This type of approximation
will be discussed in greater detail in Section 4.6.2 for discrete DPPs. For continuous
DPPs, Appendix C in the supplement of Affandi et al. (2013a) lists common kernel
types for which approximation is feasible.

Given that L (or its approximation) is low-rank, we can write it as: L(z,y) =
B(x)*B(y), where we define the operator B(z) : @ — C” and B(z)* indicates the
complex conjugate transpose. Thus, the D x D dual kernel matrix C needed for the

dual sampling algorithm can be computed by evaluating the following integral:
C= / B(z)B(x)"dz . (3.9)
Q

Given C, we can compute its eigendecomposition and begin executing the dual sam-
pling algorithm as usual. The rest of the algorithm only relies on N in the following
step:

1
Select i from Y with Pr(i) = — v B;)?.
)= 5 2078
veV
For the continuous case, this step becomes:
1

Select z from f(x) =
V]

> 0" B(@).

veV

46

Sampling directly from f(x) is usually quite difficult, but often it is possible to use
the inverse CDF method to generate a sample. That is, we can draw a number u
uniformly from [0, 1], then compute which @ corresponds to value v in f’s cumulative
density function. Appendix Cin the supplement of Affandi et al. (2013a) shows how
to do this for Gaussian and polynomial kernels.

For continuous k-DPDPs, rather than adapting the existing sampling algorithm,
Affandi et al. (2013a) instead develop a Gibbs sampler. That is, they define £ vari-
ables {x,}}_,, arbitrarily assign each x, to some value in ©, then repeatedly re-sample
each z, from the conditional density p(x; | {x;},.¢). The conditional density to sam-
ple from can be derived using Schur’s determinantal identity (recall Definition 2.3).
Letting R denote {z;};., the conditional is as follows:

plae | {@;}j20) o< L(as,) — Y [Lg'liy L@, @) L(w;, @) (3.10)
i,j 2
This continuous k-DPP sampling method, as well as the other continuous DPP
sampling method based on the dual kernel, both have complexity linear in d, the
dimension of the space Q.

From a practical standpoint, these continuous DPP sampling methods might
help improve the results for problems where DPPs are used as priors for latent vari-
able models. For example, Zou and Adams (2013) puta DPP prior on a topic model
to encourage topics to have distinct parameter vectors (less topic overlap). This could
more cleanly be done by employing a continuous DPP. While Affandi et al. (2013a)
do not explore that particular task, one interesting application that they do experi-
ment with is density estimation: given samples from some distribution, the goal is to
model the distribution as best as possible with a mixture of a small number of Gaus-
sians. The mixture weights and the means and variances of the Gaussians must be
estimated to create such a model. Typically, the means are assumed to be indepen-
dent, but if we instead assume that they are drawn from a DPP then this encourages
diversity. For a variety of densities associated with real-world datasets (e.g. mea-
surements of galaxy velocities, measurements of lake acidity), Affandi et al. (2013a)
demonstrate that this strategy yields Gaussian mixtures that have fewer components
with large mixture weights. In other words, use of a DPP prior on the means yields
a more compact model of the data. Moreover, likelihood on heldout data is not

negatively affected by the DPP assumption.

47

Dimensionality Reduction

Many of the core DPP inference tasks have a computational complexity of roughly
O(N?®), where N is the number of items in the ground set J. As discussed in Sec-
tion 2.4, where dual kernels were defined, if it is known that the DPP kernel L is
low-rank and decomposes as a product of a D x N matrix B with its transpose, as
in L = B' B, then the computational complexity can often be reduced, with D sub-
stituting for N. While D does not entirely replace N for all inference tasks, it does
reduce the cost to such an extent that computational complexities are at worst linear
in N, rather than cubic. See Table 2.1 for exact complexities. Settings where N is so
large that even a linear dependence is unacceptable often fall under the structured
DPP umbrella, described in Section 3.2. For problems within the structured class,
inference is tractable as long as the treewidth of the associated factor graph is not too
large. 'This is similar to the tractability condition for graphical models.

In this chapter we consider the setting where both N and D are simultaneously
large. This is a challenging realm because both the N x N primal kernel L = B'B
and the D x D dual kernel C = BT B are intractable objects. Exact structured DPP
inference is not feasible here, so development of an approximation scheme is vital

for this DPP variant. Fortunately, we have recourse to dimensionality reduction

48

techniques.

The remainder of this chapter proves a bound on the change in a DPP’s dis-
tribution when D features are randomly projected down to d < D dimensions.
This bound is then applied to several example problems, including a variant of the
document summarization task. The majority of the information that this chapter
conveys can also be found in Gillenwater, Kulesza, and Taskar (2012a). We con-
clude the chapter by surveying several recent papers that present alternative means

of addressing the large- N, large-D setting.

4.1 RANDOM PROJECTIONS

A classic result of Johnson and Lindenstrauss (1984) shows that high-dimensional
points can be randomly projected onto a logarithmic number of dimensions while
approximately preserving the distances between them. This result establishes that
we can project a length-D vector B; down to a much shorter length-d vector B,
while approximately retaining the values B B;. A more recent result by Magen and
Zouzias (2008) extends this idea to the preservation of volumes spanned by sets of
points. Thatis, instead of just pairwise distances, the volume of the vectors’ parallelo-
tope is approximately preserved. Here, we use the relationship between determinants
and volumes, established in Sections 1.2 and 2.1, to adapt the latter result. The pri-
mary adaptation necessary is to bound the change in the DPP’s normalization term.
As this term is a sum over an exponential number of volumes, it is not immediate
that a good bound on change in volume implies a good bound on change in DPP
probabilities.

We first state a variant of Magen and Zouzias (2008)’s result, which bounds the

ratio of volumes before and after projection from D down to d dimensions.

Lemma 4.1. Let B be a D x N matrix. Fixk < N and 0 < €,6 < 3, and set the

projection dimension d to:

B 2k 24 (log(3/9)

Let G be a d x D random projection matrix whose entries are randomly sampled from a

49

normal distribution with mean zero and variance é:

Gy~ N (0, é) | 4.2)

Let By forY C {1,...,N} denote the D x |Y| matrix formed by taking the columns
of B corresponding to the indices in'Y. Then for all Y with cardinality at most k, with
probability at least 1 — 6 we have:

(1— o < vol(GBy)

- VOI(BY) S (1 " 6)‘Y‘ , (43)

where vol(By) is the k-dimensional volume of the parallelotope spanned by the columns
0f By.

Practically, Lemma 4.1 says that for any set of N points, randomly projecting

d=0 (max {ﬁ, log (1/9) i log(N) | k}> (4.4)

down to:

€ €
dimensions approximately preserves all volumes with high probability. We can lever-
age this result to quantify the effectiveness of random projections for DPPs. Recall

the following relationship between determinants and volumes:

vol(By) = \/det(By By) . (4.5)

This equivalence implies that Lemma 4.1 is in fact a bound on determinants as well
as on volumes. For DPPs we are interested in bounding not only the change in
individual determinants, but also the total change in a sum of many determinants.
This is necessary in order to handle the DPP normalization constant. The following
lemma provides a bound on the change in a k-DPP’s normalization constant when

random projections are applied.

Lemma 4.2. Under the same conditions as Lemma 4.1, with probability at least 1 — §

we have:

D viyi=h det((GBy)'(GBy))
DYy det(By By)

(1426)72% < < (14 €)%, (4.6)

50

Proof.

> de(GBTGB) = > (vol(GBy))* (4.7)
o > Y;k (vol(By)(1 — €)*)? (4.8)
:(1._:)% S (vol(By))? (4.9)
2(1+2€)—Z’;Y£: det(By By). (4.10)

YAV ok

The first inequality holds with probability at least 1 — 6 by Lemma 4.1. The third
follows from the fact that (1 — €)(1 + 2¢) > 1 (since € < 1/2), and thus, raising this
expression to the 2k power, (1 —¢€)?* > (1+2¢)~?*. The upper bound follows directly
from Lemma 4.1:

3" det((GBy) (GBy) < Y (vol(By)(1 — e)¥)’ (4.11)
Y:|Y|=k Y:|Y|=k
=(1—-¢* > det(ByBy). (4.12)
Y:|Y|=k

[]

This bound on the DPP normalization constant can be exploited to yield a bound
on a measure of distributional similarity. Formally, let P be the DPP’s probability
measure before the features B that define the DPP kernel L = BT B are projected.
Let P be the distribution after projection. Ideally, we want a bound on the total

variational distance between P and P. The formula for L; variational distance is:

IP=Plh= > [PY)-P). (4.13)

Y:YCV

Theorem 4.3 bounds the k-constrained version of this quantity.

Theorem 4.3. Let P* be the k-DPP distribution associated with kernel L = B' B for
B € RP*N. Let d be as in Equation (4.1) and let G be a d x D random projection
matrix, as defined in Lemma 4.1. Finally, let P* be the k-DPP distribution associated
with kernel L = (GB)"(GB). Then for 0 < ¢,6 < L, with probability at least 1 — & we
have:

|P* — PF|| < efF—1. (4.14)

51

Note that €5 — 1 ~ 6ke when ke is small.

Proof. Starting from the definition of L, variational distance, we have:

IPF=Prl= D [PHY) —PHY) (4.15)
Y:|Y|=k
k PhY
_ lYlZ:kP (V) |1 - PkEY§ (4.16)

B det([GBY][GBy]) Zyyi—k det(By. By’)
= 2 PN T BIBy) Sy ded(GELIGEy)

[Y|=k

< 1=+ (1+20% > PHY) (4.17)
Y:|Y|=k

= |1 = (14 €)*"(1 + 2¢)*] (4.18)

< |1 — 6%664]“‘ (4.19)

A (4.20)

The first inequality follows from Lemmas 4.1 and 4.2, which hold simultaneously
with probability at least 1 — §. The second inequality follows from (1 + a)® < e® for
a,b> 0. []

Given these bounds on random projections for DPPs, we can now apply them
to handle the large- NV, large-D setting. Specifically, combining dual DPP algorithms
with the smaller number of features d < D makes approximate inference possible

for structured DPPs.

4.2 'THREADING k-SDPPs

To empirically verify the efficacy of random projections, we test this dimensional-
ity reduction technique on several structured k-DPP applications. We will refer to
structured k-DPPs as k-SDPPs. The inference techniques for SDPPs and k-DPDs,
developed in Kulesza and Taskar (2010) and Kulesza and Taskar (2011a), respec-
tively, are summarized in Sections 3.2 and 3.1. They combine seamlessly, such that
the computational complexity of the SDPP sampling procedure is unchanged. Re-
call that, given the eigendecomposition of the dual kernel C, sampling an SDPP is

52

an O(D?*k* + DM°RE?) operation. The k here is the number of structures in the
sampled set, R is the number of parts in a structure, M is the number of values a
part y, can take on, and ¢ is the maximum degree of any factor node. Also recall
that the kernel C itself takes O(D?M*“R) time to compute, and O(D¥) time to eigen-
decompose. With random projections, we can change the D factors in all of these
expressions to d < D. Then, the only place that D will occur in our algorithms is
in the random projection step itself. This projection takes O(M°RDd) time, as it
corresponds to the multiplication of a d x D projection matrix G by a D x MR
matrix that contains all of the feature values for the structured DPP factors.

In what follows, we will use the notation from Section 2.5, which decomposes
a structure y’s feature vector B(y) into a quality score ¢(y) and similarity features

#(y). With this notation, the probability of a set Y under a k-SDPP is:

(I1 q(y)) det (¢(Y) "¢(Y))

Yy yey

Pr(Y) = , (4.21)
Y/_;Cy < 11 /q(y)) det (¢(Y")To(Y"))
v e

where ¢(Y) denotes the D x |Y| matrix consisting of columns ¢(y) fory € Y. We
assume that ¢ and ¢ factor over the parts of a structure, as in Equation (3.0).

The structure on which our experiments operate is a thread—a singly-linked
chain. In all cases, the threading application takes the form of finding diverse, high-
quality paths (threads) in a directed graph. More concretely, suppose that we have
an M-node graph. Let the ground set Y of our DPP consist of all length-R paths in
the graph. Each y € Y is then a sequence [y, . .., yr] where each y, is a graph node
and nodes y,, y,+1 are connected by an edge in the graph. For a complete graph,
there are N = M* such possible threads. While we only consider the setting where
the length R is identical for all threads, note that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>