
Formalizing and Enhancing Verilog *
Jennifer Gillenwater, Gregory Malecha, Cherif Salama

(presenter), Angela Yun Zhu, Walid Taha
Rice University, Houston, TX, USA

Jim Grundy and John O’Leary
Intel Strategic CAD Labs,

Portland, OR, USA

Abstract— Hardware description languages (HDL) suffer from
inconsistencies between their simulation and synthesis semantics:
A program successfully compiled and simulated might fail to
synthesize. In this work, we propose the usage of statically typed
two-level languages (STTL) to eliminate such inconsistencies.

Languages like VHDL and Verilog have constructs (loops,
parameters, and other abstractions) that helps the digital cir-
cuit designer in writing more generic code. These constructs
are eliminated during elaboration and replaced by appropriate
expansions. In many cases synthesis failure is effectively due
to failure to achieve this step. Capturing the mechanics of that
preprocessing stage can be formalized using STTLs that allow us
to define corresponding expansion semantics. We can therefore
statically verify the synthesis feasibility of a certain program by
type checking against rules specifically designed for that purpose.

In this paper, we show how this STTL approach can be
applied to Verilog. To do so, we define the syntax, first-stage
expansion semantics, and type system for a representative subset
of the Verilog language that we call (Featherweigth SV). We
also prove that according to our model, expansion preserves
well-typedness of a program, that it results in an obviously
synthesizable program (free from first stage constructs) and
finally that it does not depend on wire values.

I. INTRODUCTION

All modern hardware description languages allow circuit
designers to write generic code capable of describing circuit
families. Using such constructs a family of simple encoders
can be described in Verilog as:

module encode (L,X);
parameter n = 2; parameter m = 4; // 2ˆn
input [m-1:0] L; output [n-1:0] X;
reg [n-1:0] X; integer i;

always @(L) begin
X = 0;
for (i=0; i<m; i=i+1) if (L[i]==1) X=i;

end
endmodule

Unfortunately, circuit designers both in academia and indus-
try usually avoid such descriptions opting for simpler, more
explicit descriptions that are free from parameterized modules,
iterations, and conditionals. It is common to see the above
generic design manually expanded into a concrete instance
like the following:

if (L[0]==1) X=0; if (L[1]==1) X=1;
if (L[2]==1) X=2; if (L[3]==1) X=3;

Clearly this leads to much longer descriptions and more
importantly it completely prevents writing generic reusable

* An extended version of this internal SRC publication is currently being
reviewed for publication. The extended version is available from the authors.

module descriptions. The above example is a simple example,
but our study of available industrial hardware descriptions
shows that the problem is pervasive. The OpenRISC 1200’s
32x32 multiplier [5] is 2538 lines long, but would be a mere
1405 lines if a well-designed mechanism for preprocessing
was available. The situation is similar for the OpenSPARC
T1’s 64x64 multiplier [3] (1167 vs. 2510 in the original code).

The reason why developers avoid such constructs is that
using them produces designs whose properties (including
synthesizability) can only be determined after the elaboration
phase where these constructs are expanded and therefore
eliminated.

The line between the descriptions that are synthesizable, or
will elaborate to synthesizable descriptions, and those that are
not can be unclear and ad hoc. It doesn’t have to be this way.
Two-level languages [2], [4] and multi-level languages [6],
[7] have been studied as a way to understand code generation
in software. They provide a formal infrastructure that allows
characteristics of programs to be checked without requiring
expansion.

Our thesis is that the techniques developed for statically
typed two-level languages are very suitable to hardware de-
scription languages. We believe that more systematic support
for elaboration combined with more powerful static checking
(before elaboration) can reduce the cost needed to produce
large scale designs. Our long term goal is to demonstrate this
thesis in the context of a practical extension of the Verilog
language. Further, we believe that type systems for such
languages can be developed to enforce bounds on hardware
resources such as area, power and delay.

II. SYNTAX

In this section we present Featherweight SV, a calculus for
a representative core of Verilog that we kept to a minimum to
facilitate analysis of the essential features of the language.

The abstract syntax for Featherweight SV is parameterized
by sets for identifier and operator names. In addition, it will be
convenient to use several meta-variables to range over indices
and index domains.

Module m ∈ ModuleNames
Signal s ∈ IdentifierNames
Elaboration Variable x, y ∈ ParameterNames
Operator f ∈ O
Index h, i, j, k, q, r ∈ N
Index Domain H, I, J, K, Q, R ⊆ N

Where ModuleNames, IndentifierNames, ParamaterNames
are countably infinite sets, O is the finite set of operator names,

and N is the set of natural numbers.
The full grammar for the Featherweight SV is defined as

follows:

Circuit Description p ::= 〈Di〉i∈I m
Module Definition D ::= module m b
Module Body b ::= 〈xi〉i∈I 〈dj tj sj〉j∈J is

〈tk sk〉k∈K 〈Pr〉r∈R

Direction d ⊆ {in, out}
Type t ∈ T ::= wire | reg | int
Parallel Statement P ::= m 〈ei〉i∈I 〈lj〉j∈J | assign l e

| always S
| for(y = e; e; y = e)〈Pi〉i∈I

LHS value l ::= s | s[e] | s[e : e]
Sequential Statement S ::= @E+ S | l = e

| if e then S else S
| for(y = e; e; y = e)S | 〈Si〉i∈I

Event E ::= g l
Edge g ::= posedge | negedge | edge
Expression e ::= l | x | v | f〈ei〉i∈I

Value v ::= (0 | 1)32

A circuit description 〈Di〉i∈I m is a sequence of module
definitions 〈Di〉i∈I followed by a module name m. The mod-
ule name indicates which module from the preceding sequence
represents the overall input and output of the system. A module
definition is a name and a module body. A module body itself
consists of a sequence of module parameter names, a sequence
of port declarations (carrying direction, type, and name for
each port), a sequence of local variable declarations, and a
sequence of parallel statements. A port direction indicates if
it is an input, output, or bidirectional port. A bidirectional
port can be used either as input or output. The type of a port
or a local variable can be wire, register, or integer. A
parallel statement can be a module instantiation, an assign
statement, an always statement carrying a sequential state-
ment, or a for-loop whose body is strictly composed of
parallel statements. A module instantiation provides module
parameters as well as what gets connected to various ports.
An assign statement consists of a left hand side (LHS) value
and an expression. An LHS value is either a variable, an array
lookup, or an array range. A sequential statement is either a
guarded statement, an assignment, a conditional statement, a
for-loop whose body is a sequential statement, or a sequence
of sequential statements. An event consists of an edge trigger
(positive, negative, or either) and an LHS value. An
expression is either an LHS value, a parameter name, a 32-bit
integral value, or an operator application. The choice of 32-bit
values reflects the peculiar manner in which Verilog interprets
parameter values when they are viewed as wire signals.

Using this simplified and uniform representation, we can
write the encoder presented in the introduction as follows:

< module encode <n,m> <in wire L, out reg X> is <>
< always @(L)

< X=0,
for(i = 0; i < m; i=i+1)
if(L[i] == 1) then X = i else <>

>
>,
module main <> <in wire L, out reg X> is <>
< encode <2,4> <L,X> >

> main

III. TYPE SYSTEM

This section presents the type system for Featherweight SV.
The type system presented in this section specifies what is a
synthesizable description. Almost all constructs are trivially
synthesizable because they map directly to physical con-
nections and modules. The only exception is iteration. We
show how to type-check for-loop constructs and we show
what preprocessing computations are implicitly embodied in
a design that uses abstraction mechanisms such as for-
loops and module parameters. In the terminology of two-level
languages, preprocessing is the level 0 computation, and the
remaining computation is considered to be the level 1 part.
In a Verilog description, there are relatively few places where
level 0 computations are required. In Featherweight SV, these
places are restricted to: 1) expressions that relate to module
parameters, 2) expressions that relate to the bounds on a for-
loop, and 3) indices into arrays.

By convention, the typing judgment (generally of the form
∆ # X) will be assumed to be a level 1 judgment. That is, it
is checking for validity of a description as a computation that
has already been pre-processed. Expressions, however, may be
computations that either must be performed during expansion
or that must remain intact to become part of the result of
preprocessing. For this reason, the judgment for expressions
will be annotated with a level n ∈ {0, 1} to indicate we are
checking this expression for validity at level 0 or at level 1.
This annotation will appear in the judgment as a superscript
on the turnstyle as shown in #n.

A. Typing Environments
To define the type system we need some auxiliary notions. A

module type consists of the number of its module parameters,
as well as a sequence of directions and types for ports. An
operator signature is a function that takes an operator, the level
at which the operation is executed, the types of the operands
and returns the type of the result. As noted above, levels can
be 0 or 1. A module environment associates names of modules
with their corresponding types while a variable environment
associates variable names with their corresponding directions
and types. We do not have to keep level information in the vari-
able environment because we can differentiate between levels
syntactically. All signals and declared local variables (denoted
by s) are considered level 1 variables while parameters and
for-loop variables (denoted by x or y) are considered level
0 variables.

Module Type M ::= k 〈di ti〉i∈I

Operator Signatures Σ ∈ Πi. O× N× Ti → T

Level n ::= 0 | 1
Module Environment ∆ ::= [] | m : M :: ∆
Variable Environment Γ ::= [] | s : d t :: Γ | x : d t :: Γ
Level 1 Variable Environment Γ+ ::= [] | s : d t :: Γ+

B. Typing Rules
A circuit description is well-typed when the judgment # p

is derivable. In Figure 1 we only show the most interesting
typing rules that require some expressions to be typable at level

0. The first such rule is the module instantiation rule, which
requires that the expressions relating to module parameters
must be typable as level 0 computations. The rules for for-
loop (T-For) and (T-SFor) require that the initialization, test,
and increment expressions are all typable at level 0. The test
and increment expressions require that the environment be
extended to include the counter variable as being an integer
(with direction {in}). If any of these expressions is not typable
at level 0, the for-loop is rejected by the type system.

The rules for expressions (T-Index) and (T-Range) also
require that the indices be typable at level 0 as being integers.

IV. OPERATIONAL SEMANTICS FOR PREPROPCESSING

A big-step operational semantics indexed by the level of the
computation will be used to formally specify what preprocess-
ing must be done. The specification will dictate how expansion
should be performed, what the form of the preprocessed circuit
descriptions should be, and what errors can occur during
preprocessing. We assume a standard notion of substitution
using the usual free and bound variable conventions as in the
lambda calculus [1].

To model the possibility of error during preprocessing, we
define the following two auxiliary notions:

Term X ::= p | D | b | P | l | S | E | e
Possible Term X⊥ ::= X | error

This allows us to write p⊥ or E⊥ to denote a value that
may either be the constant error or a value from p or E,
respectively.

Preprocessing will be defined by the derivability of judg-
ments of the general form 〈Di〉 # X

n
↪→ X⊥, 〈Dj〉. Intuitively,

preprocessing will take a sequence of module declarations and
an X and produce a new sequence of instantiated modules
〈Dj〉 and either a preprocessed X or the failure value ⊥. When
the 〈Di〉 or 〈Dj〉 components are irrelevant to the judgment,
they will simply be dropped. The first can occur if we are
processing an entity that does not require knowledge about the
modules available in the context, and the second can occur if
we are processing an entity that cannot entail the instantiation
of new modules.

The most interesting preprocessing rules are defined in
Figure 2. Preprocessing a module instantiation generates a
new module representing a unique instance of the module
definition. An error occurs if the module is not defined in
the context, or if the number of arguments used to instantiate
a module does not match the number required by its definition.

Preprocessing a for-loop essentially amounts to evaluating
a for-loop, except that the result of evaluation is a sequence
of statements rather than a modification of the global state.

Expressions that are at level 1 are preprocessed, and ones at
level 0 are evaluated normally. For expressions at level 0 the
only active rule in evaluation pertains to operator applications.
However, it is important that the semantics is explicit about
the kinds of errors that can occur during evaluation, and
in particular that encountering any identifier during level 0
evaluation constitutes a preprocessing error. This formalizes

the property that any dependency on either an uninstantiated
parameter or a wire value constitutes a preprocessing error.

V. TECHNICAL RESULTS

In this section we state and report the validity of the results
that formalize the desired properties of Featherweight SV. In
particular, we establish three theorems (Theorems 1, 2, and 3).

A. Preprocessing Produces Well-Typed Circuit Descriptions

From the operational semantics, we see that the topmost
constructs where substitution can happen are parallel state-
ments and thus we can state the substitution lemma as follows:

Lemma 1 (Substitution). If ∆; Γ, x : d t # P and Γ #n v :
d t then ∆; Γ # P [x '→ v]

Sketch: The proof proceeds by induction on the deriva-
tion of the first judgment.

The type preservation theorem can be defined for a circuit
description as follows:

Theorem 1 (Type Preservation). If # p and p
1

↪→ p′ then # p′

Sketch: The proof proceeds by induction on the deriva-
tion of the second judgment.

While this is an important property, it still allows for
two undesirable behaviors that our type system does in fact
guarantee: First, it is possible for preprocessing to produce the
value ⊥. Second, it is possible for preprocessing to produce
a value p′ that is not ⊥, but still contains constructs that we
would like to be eliminated during synthesis. The next two
results address these two issues.

B. Preprocessing does not Depend on Wire Values (and is
Type Safe)

Preprocessing returns the error value if a traditional runtime
type errors while a term is being evaluated during prepro-
cessing. But the most interesting cause for such errors in our
setting is when a preprocessing computation depends on a wire
value. This cannot occur for a well-typed term.

Theorem 2 (Type Safety). If # p and p
1

↪→ p′ then p′ (= error

Sketch: This results follows directly from Theorem 1
given that no typing rules will consider error to be well-
typed.

C. Preprocessing Produces Fully Expanded Terms

To show that preprocessing produces fully expanded terms
that do not contain any unprocessed preprocessing directives,
we must formalize this property. The set of fully expanded
terms is identical to the set of terms before expansion except
that module bodies and instantiations can not have parame-
ters and that for-loop statements are not allowed. We call
this property preprocessing soundness that is established in
Theorem 3 .

∆; Γ ' P

{Γ '0 ei : {in} int}
∆(m) = | 〈ei〉 | 〈djtj〉
{Γ '1 lj : d′jtj}
{dj ⊆ d′j}

∆; Γ ' m〈ei〉 〈lj〉
(T−ModInst)

{∆; Γ, y : {in} int ' Pi}
Γ, y : {in} int '0 e2, e3 : {in} int
Γ '0 e1 : {in} int

∆; Γ ' for(y = e1; e2; y = e3)〈Pi〉
(T−For)

Γ 'n e : d t

Γ(s) = d t
Γ '0 e : {in} int

Γ '1 s[e] : d t
(T−Index)

Γ(s) = d t
Γ '0 e1, e2 : {in} int

Γ '1 s[e1 : e2] : d t
(T−Range)

Fig. 1. Some Typing Rules From The Featherweight SV Type System

〈D〉 ' P
1

↪→ 〈P⊥〉, 〈D〉

{ei
0

↪→ vi} {lj
1

↪→ l′j}
module m 〈xi〉 〈dj tj sj〉 is 〈tq sq〉 〈Pk〉 ∈ 〈Di〉
{〈Di〉 ' Pk{[xi)→ vi]}

1
↪→ 〈Pr〉r∈R(k), 〈Dh〉h∈H(k)}

m′ /∈ 〈Di〉 m′ /∈
]

k

〈Dh〉h∈H(k)

〈Di〉 ' m〈ei〉〈lj〉
1

↪→ 〈m′〈〉〈l′j〉〉, 〈module m′ 〈〉 〈dj tj sj〉 is 〈tq sq〉
]

k

〈Pr〉r∈R(k)〉 *
]

k

〈Dh〉h∈H(k)
(E−ModInst)

e1
0

↪→ v1

e2[y)→ v1]
0

↪→ v2 v2 += 032

{〈Di〉 ' Pk[y)→ v1]
1

↪→ 〈Pr〉r∈R(k), 〈Dh〉h∈H(k)}
〈Di〉 ' for(y = e3[y)→ v1]; e2; y = e3) 〈Pk〉

1
↪→ 〈Pj〉, 〈Dq〉

〈Di〉 ' for(y = e1; e2; y = e3) 〈Pk〉
1

↪→
]

k

〈Pr〉r∈R(k) * 〈Pj〉,
]

k

〈Dh〉h∈H(k) * 〈Dq〉
(E−ForTrue)

e1
0

↪→ v

e2[y)→ v]
0

↪→ 032

〈Di〉 ' for(y = e1; e2; y = e3) 〈Pk〉
1

↪→ 〈〉, 〈〉
(E−ForFalse)

e
1

↪→ e⊥
e

0
↪→ v

s[e]
1

↪→ s[v]
(E−Index1)

e1
0

↪→ v1

e2
0

↪→ v2

s[e1 : e2]
1

↪→ s[v1 : v2]
(E−Range1)

Fig. 2. Some Expansion Rules From The Featherweight SV Operational Semantics

Fully Expanded Term X̂ =
{u | u ∈ X⊥ ∧ Y ∈ subterms(u) ⇒

((Y = 〈xi〉i∈I 〈dj tj sj〉j∈J is 〈tk yk〉k∈K 〈Pr〉r∈R ⇒ I = ∅)
∧(Y = m 〈ei〉i∈I 〈lj〉j∈J ⇒ I = ∅)
∧(Y += for(y = e; e; y = e)S)
∧(Y += for(y = e; e; y = e)〈Pi〉i∈I))}

Theorem 3 (Preprocessing Soundness). If p
1

↪→ p′ then p′ ∈ p̂

Sketch: The proof proceeds by induction on the deriva-
tion of the first judgment.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Featherweight SV, a core calcu-
lus (syntax, type system, and preprocessing rules) that shows
how such preprocessing constructs can be developed in the
context of a revision of a mainstream hardware description lan-
guage (Verilog). We also formalized three technical properties
that capture the key features of this calculus. More generally,
we have shown the usefulness of STTLs when applied to hard-
ware description languages. Using STTLs, we can statically
check the synthesizability of a description having as much
abstraction constructs as required. If it type-checks, the same
description can be expanded into an trivially synthesizable

circuit. These results imply that abstraction constructs can
safely be used by designers and that they are actually desirable.

In future work, we expect that this framework will play
a key role in providing other guarantees about the results
of synthesis, including matching bus sizes, area, timing, and
power.

REFERENCES

[1] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics.
North-Holland, Amsterdam, 1984.

[2] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untyped
lambda-calculus. Journal of Functional Programming, 1(1):21–69, 1991.

[3] Sun Microsystems. Opensparc t1 processor file: mul64.v. http://open
sparc-t1.sunsource.net/nonav/source/verilog/html/mul64.v.

[4] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and
code generation. Theoretical Computer Science, 56(1):59–133, 1988.

[5] Opencores.org. Or1200’s 32x32 multiply for asic. http://www.opencores.
org/cvsweb.shtml/or1k/or1200/rtl/verilog/or1200 amultp2 32x32.v.

[6] Walid Taha. Multi-Stage Programming: Its Theory and Applications.
PhD thesis, Oregon Graduate Institute of Science and Technology, 1999.
available from [?].

[7] Walid Taha and Patricia Johann. Staged notational definitions. In
Krzysztof Czarnecki, Frank Pfenning, and Yannis Smaragdakis, editors,
Generative Programming and Component Engineering (GPCE), Lecture
Notes in Computer Science. Springer-Verlag, 2003.

