
Synthesizable High Level Hardware Descriptions ∗

Using Statically Typed Two-Level Languages to Guarantee Verilog Synthesizability

Jennifer Gillenwater Gregory Malecha
Cherif Salama Angela Yun Zhu

Walid Taha
Rice University

{jgillenw,gmalecha,cherif,angela.zhu,taha}@rice.edu

Jim Grundy John O’Leary
Intel Strategic CAD Labs

{jim.d.grundy,john.w.oleary}@intel.com

Abstract
Modern hardware description languages support code-generation
constructs like generate/endgenerate in Verilog. These con-
structs are intended to describe regular or parameterized hardware
designs and, when used effectively, can make hardware descrip-
tions shorter, more understandable, and more reusable. In practice,
however, designers avoid these constructs because it is difficult to
understand and predict the properties of the generated code. Is the
generated code even type safe? Is it synthesizable? What physical
resources (e.g. combinatorial gates and flip-flops) does it require?
It is often impossible to answer these questions without first gener-
ating the fully-expanded code. In the Verilog and VHDL commu-
nities, this generation process is referred to as elaboration.

This paper proposes a disciplined approach to elaboration in
Verilog. By viewing Verilog as a statically typed two-level lan-
guage, we are able to reflect the distinction between values that
are known at elaboration time and values that are part of the circuit
computation. This distinction is crucial for determining whether ab-
stractions such as iteration and module parameters are used in a
synthesizable manner. To illustrate this idea, we develop a core cal-
culus for Verilog that we call Featherweight Verilog (FV) and an
associated static type system. We formally define a preprocessing
step analogous to the elaboration phase of Verilog, and the kinds
of errors that can occur during this phase. Finally, we show that a
well-typed design cannot cause preprocessing errors, and that the
result of its expansion is always a synthesizable circuit.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation; Preprocessors; F.3.3 [Log-
ics and Meanings of Programs]: Studies of Program Constructs

General Terms Languages, Standardization, Theory, Verification

Keywords Code Generation, Hardware Description Languages,
Statically Typed Two-Level Languages, Synthesizability, Verilog
Elaboration

∗ This work was supported by the National Science Foundation (NSF) SoD
award 0439017, and the Semiconductor Research Consortium (SRC) Task
ID: 1403.001 (Intel custom project).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’08, January 7–8, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-977-7/08/0001. . . $5.00

1. Introduction
The Verilog language has three kinds of constructs. Constructs of
the first kind are used to describe synthesizable hardware compo-
nents. These are usually referred to as structural constructs. Con-
structs of the second kind describe behaviors in a simulation en-
vironment and are ignored during synthesis. These allow the de-
scription of circuit functionality at an algorithmic level, and are
usually referred to as behavioral constructs. The third kind of con-
struct describes the generation of more Verilog code through a pro-
cesses called elaboration. This kind includes parameterized mod-
ules, conditionals, and iterations and is important because it allows
for a clear and compact description of regular designs as well as
reusable descriptions of circuit families.

For example, for-loops and module parameterization can be
used to describe a family of ripple adders as follows:

module adder(s,cout,a,b,cin);
parameter N=4;
input [N-1:0] a,b;
input cin;
output [N-1:0] s;
output cout;
wire [N:0] c;
genvar i;

assign c[0] = cin;
generate

for(i=0; i<N; i=i+1)
full_adder fa (s[i],c[i+1],a[i],b[i],c[i]);

endgenerate
assign cout = c[N];

endmodule

This example uses a sequence of full adder instances to con-
struct a ripple adder of variable size N. In this specific case, the
parameter N is assigned the default value 4 which means that when
the module is instantiated, a 4-bit ripple adder will be created by
default. A different value can be specified when instantiating the
module to create differently-sized ripple adders. That is why it is
said that the above code describes a family of ripple adders and not
a specific one. This way, parameterized modules allow designers to
write generic circuit descriptions.

The line between synthesizable and non-synthesizable descrip-
tions is unclear and ad hoc. The Verilog Register Transfer Lan-
guage (RTL) synthesis standard (IEEE 1364.1 [9]) does not for-
mally define synthesizable descriptions. Instead, it gives synthesiz-
ability guidelines, illustrated by a series of examples. Although this
is useful to understand what kind of descriptions should be synthe-
sizable, it is not sufficient.

The first Verilog standard (IEEE 1364-1995 [5]) supported it-
erations and conditionals only as behavioral statements meant for
simulation. Whether these constructs were synthesizable or not
was implementation dependent. The Verilog-2001 standard [6], and
subsequent Verilog-2005 [8] and System Verilog [7] standards,
extend Verilog-95 with the generate/endgenerate construct,
which allows conditionals and single variable iteration statements
to appear in parallel statements. In the context of generate blocks,
these statements are elaborated into ordinary parallel statements
prior to simulation or synthesis. Note that the use of the keywords
generate and endgenerate is optional. Any conditional or iter-
ative parallel statement is implicitly interpreted as being inside a
generate block.

Because generate blocks are analyzed only after they are elab-
orated into more Verilog code, errors remain undetected until syn-
thesis, when they are more difficult to analyze. In other words, only
concrete instances of a family of designs — like the default four-
wide instance of the ripple adder above — are checked for errors.
A similar problem is familiar in programming languages that intro-
duce a stage of code generation before execution. Macros in C and
templates in C++ are examples where the characteristics of a pro-
gram cannot be understood without “expanding away” the macros
or templates. For this reason sophisticated use of such features is
wisely curtailed by developers despite the obvious power of the
technique. So it is with Verilog: In both educational and industrial
settings it is common to see the loop in the previous generic design
manually expanded into the following concrete instance:

full_adder fa_0 (s[0],c[1],a[0],b[0],c[0]);
full_adder fa_1 (s[1],c[2],a[1],b[1],c[1]);
full_adder fa_2 (s[2],c[3],a[2],b[2],c[2]);
full_adder fa_3 (s[3],c[4],a[3],b[3],c[3]);

As an alternative to writing such descriptions manually, it is
not unusual to see designers using scripting languages, such as
Perl, to generate Verilog code for specific instances of modules
families. Both unrolling and scripting are far from ideal. The first
is tedious, error-prone and defeats many principles of software
engineering. The second uses a language that has no understanding
of the hardware description it generates. It treats everything as a
set of strings rendering static analysis of any kind impractical. The
generated code is not even guaranteed to be syntactically correct! 1

It does not have to be this way. Two-level [4, 13] and multi-
level languages [16, 18] have been studied as a way to understand
software code generation. They provide a formal infrastructure that
allows characteristics of programs to be checked without requiring
expansion. Kiselyov, Swadi and Taha [10] have shown how to gen-
erate highly optimized, type correct Fast Fourier Transform ker-
nel routines from compact algorithmic descriptions written using
multi-level languages. Taha, Ellner and Xi [17] have shown how to
generate heap bounded implementations of sorting programs (es-
sentially, malloc-free C implementations) from a compact, parame-
terized sorting algorithm written using two-level languages. In both
cases all static analysis is performed prior to code generation.

Bluespec SystemVerilog (BSV) also has powerful generate-like
features with static checks. However we are not aware of a formal
account of the semantics of these constructs or of BSV in general.
BSV’s reference guide [2] alludes to the semantics of BSV being
defined based on Term Rewriting Systems (TRS) [19]. However,

1 Emacs also has an advanced Verilog mode that provides macro expan-
sion capabilities. This mode reduces the amount of typed code by inserting
AUTOS comments that expand into corresponding Verilog code. This ap-
proach is not an alternative to unrolling or scripting because these macro
do not support generate-like code, they only infer and insert some miss-
ing information that the programmer does not want to type (e.g. port lists,
sensitivity lists).

the relationship between BSV and TRS is not formally explained.
A formal semantics is a prerequisite for having static guarantees
about synthesizability.

Our thesis is that the techniques developed for statically typed
two-level languages are particularly pertinent to hardware descrip-
tion languages. We believe that more systematic support for elabo-
ration combined with more powerful static checking (before elab-
oration) can reduce the time, and therefore the cost, needed to
produce large scale designs. Similar to the way Taha, Ellner and
Xi [17] used type systems to characterize software heap bounds,
we believe that we can use such systems to enforce bounds on hard-
ware resources such as area, power and delay. Our long term goal
is to demonstrate this thesis in a context of a practical extension to
the Verilog language.

1.1 Contributions
Our key contribution is to show that, by treating Verilog as a stat-
ically typed two-level language, we can statically check the syn-
thesizability of a description with high-level abstractions without
having to elaborate it. Demonstrating this possibility:

• Provides a proof of concept that we can check properties of
the circuit generated from elaboration without actually perform-
ing elaboration. This paves the way for more aggressive static
checking.
• Suggests that designers may be able to use high level abstrac-

tions and get all the associated advantages. This can be done
without compromising synthesizability because any misuse of
abstractions that might impair synthesizability will be detected
statically.
• Allows designers to use a single — tightly integrated — lan-

guage to describe circuits and circuit families.
• Allows us to use the same type checker to check descriptions

before and after elaboration.
• Allows for checking the synthesizability of families of circuits

once, rather than at each instantiation.
• Saves wasted time elaborating or synthesizing circuits that will

fail in either of these phases.

In trying to achieve these goals, we were lead to another con-
tribution that may be of broader significance and applicability: We
introduce and rigorously define obvious synthesizability and gen-
eral synthesizability (or synthesizability for short) in an implemen-
tation independent way (Section 2.4). These concepts allow us to
pin down the Verilog constructs that are interesting from the syn-
thesizability point of view and formally treat them.

To address these issues from a semantic point of view, we define
Featherweight Verilog (FV), a calculus for a representative core
of structural Verilog (Section 2). Using ideas from two-level lan-
guages, we give a type system to FV that reflects the conditions
needed to guarantee that various constructs do not interfere with
synthesizability (Section 3). We develop a two-level operational
semantics for FV that captures how various constructs should be
elaborated as well as what can go wrong during this process (Sec-
tion 4).

We establish three properties of FV (Section 5). Theorem 1
shows that a well-typed design elaborates to a well-typed design.
Theorem 2 shows that it is always safe to perform elaboration of
a well-typed design at compile time because elaboration never de-
pends on wire values. Theorem 3 shows that the result of elabora-
tion is a design that is itself free of elaboration constructs. Com-
bined, these results show that a well-typed design is always syn-
thesizable, which implies that we can statically check for synthe-
sizability of a description before elaborating it using a relatively

simple type checker. The complete proofs of these theorems are in
the extended technical report version of this paper [3].

We also provide a prototype implementation of a Verilog Pre-
Processor (VPP). VPP statically checks the synthesizability of a
Verilog description (possibly containing high level abstractions)
and elaborates it if it is well-typed (Section 6).

2. Syntax of FV and Synthesizable Subset
FV focuses on the structural (rather than behavioral) subset be-
cause we are interested in synthesizability. The behavioral subset is
primary intended for simulation and testing. Therefore, we do not
need to model registers. This does not limit our ability to describe
sequential circuits since these can be described structurally either
by assuming a primitive flip-flop module or by describing one using
primitive gates and feedbacks. Moreover, whereas the full Verilog
language provides many constructs to make writing hardware de-
scriptions as convenient as possible, a calculus must be minimized
to facilitate analysis of the essential features of the language. With
this goal in mind, we model only signals, primitive gates, condi-
tionals, iterations, and modules. A module is a circuit with input
and output signals. In addition, a module’s type can be parameter-
ized by a set of integer-values. Restricting ourselves to this core
calculus in our formal presentation does not mean that the ideas we
present are only applicable to the presented subset. Our prototype
implementation currently supports a larger subset and will eventu-
ally grow to support the full language.

2.1 Formal Syntax (BNF)
The abstract syntax for FV makes use of the following meta-
variables:

Module m ∈ ModuleNames
Signal s ∈ IdentifierNames
Elaboration Variable x, y ∈ ParameterNames
Operator f ∈ O
Index h, i, j, k, q, r ∈ N
Index Domain H, I, J, K, Q, R ⊆ N

where ModuleNames, IndentifierNames, and ParameterNames are
countably infinite sets used to draw modules, signals, and parame-
ters names respectively. O is the finite set of operator names, and
N is the set of natural numbers. The full grammar for FV is defined
as follows:

Circuit Description p ::= 〈Di〉i∈I m
Module Definition D ::= module m b
Module Body b ::= 〈xi〉i∈I 〈dj sj〉j∈J is

〈tk sk〉k∈K 〈Pr〉r∈R

Direction d ⊆ {in, out}
Type t ∈ T ::= wire | int
Parallel Statement P ::= m 〈ei〉i∈I 〈lj〉j∈J | assign l e

| if e then〈Pi〉i∈Ielse〈Pj〉j∈J

| for(y = e; e; y = e)〈Pi〉i∈I

LHS value l ::= s | s[e] | s[e : e]
Expression e ::= l | x | v | f〈ei〉i∈I

Value v ::= (0 | 1)32

A circuit description p is a sequence of module definitions
〈Di〉i∈I followed by a module name m. The module name indi-
cates which module from the preceding sequence represents the
overall input and output of the system. A module definition is a
name m and a module body b. A module body itself consists of
fours sequences: (1) module parameter names 〈xi〉i∈I , (2) port dec-
larations (carrying direction, and name for each port) 〈dj sj〉j∈J ,
(3) local variable declarations 〈tk sk〉k∈K , and (4) parallel state-
ments 〈Pr〉r∈R. A port direction indicates whether the port is in-
put, output, or bidirectional. The type of a local variable can be

wire or int. A parallel statement can be a module instantiation, an
assign statement, a conditional statement, or a for-loop. A mod-
ule instantiation specifies module parameters 〈ei〉i∈I as well as port
connections 〈lj〉j∈J . An assign statement consists of a left hand
side (LHS) value l and an expression e. An LHS value is either a
variable s, an array lookup s[e], or an array range s[e : e]. An
expression is either an LHS value l, a parameter name x, a 32-bit
integer v, or an operator application f〈ei〉i∈I . The choice of 32-
bit values reflects the peculiar manner in which Verilog interprets
parameter values when they are viewed as wire signals.

As a notational convenience, we also define a general term X
that is used to range over all syntactical constructs of FV as follows:

Term X ::= p | D | b | P | l | e

2.2 Relation of Calculus to Verilog
The calculus closely resembles the concrete syntax for Verilog but
has been simplified for convenience. In particular, in FV:

• All sequences are represented uniformly as <a,b,...,z>,
• We indicate the start of the module body with the terminal is,
• Local variable declarations are aggregated immediately after

the is terminal,
• Module parameters are not declared locally, but rather, listed

separately before the usual formal parameters,
• Module parameters do not have default values and therefore

appropriate values must be passed to any parameterized module
in order to instantiate it.
• The directions of ports in the formal argument list to a module

are declared in the formal argument itself (as allowed starting
from Verilog-2001), rather than in the body of the module
definition (as in Verilog-95),
• Names of several Verilog keywords, such as input and output,

are replaced by shorter names, such as in and out,
• Variable direction is represented using a set that can be equal

to {in}, {out}, or {in, out} denoting in, out, and inout
respectively. The latter is also used for non-directional variables
such as internal signals.
• The if-statement requires an else clause. Since the alternative

part can be an empty sequence of statements, this is only a
cosmetic constraint,
• Wire sizes are dropped from terms because Verilog uses auto-

matic coercions to pad arrays of wires of different size to match
them,
• All for-loop variables do not need to be declared explicitly and

are local to the loop,
• Primitive gates are not explicitly modeled, but they can be

expressed using logical operators, and
• Integers are represented in binary.

2.3 Notational Conventions
We use the following conventions in the formal treatment of FV:

• A sequence of elements drawn from the set X is either the
empty sequence 〈〉 or a non-empty sequence h :: t with a head
h and a tail sequence t.
• We write 〈Xi〉i∈I to denote a sequence of elements drawn from

the set X . The index set I is a subset of the naturals.
• When it is clear from context, we will drop the index set and

write 〈Xi〉 instead of 〈Xi〉i∈I .

• We write X] Y for the concatenation of the two sequences X
and Y .
• We write

]
k

〈Dr〉r∈R(k) for the concatenation of all 〈Dr〉r∈R(k).

• We write | 〈Xi〉 | for the length of the sequence 〈Xi〉.

2.4 Synthesizable Subset
To proceed, we require a deeper understanding of what is synthe-
sizable and what is not in FV. To do so we introduce and define two
general concepts:

• obvious synthesizability which means that a description uniquely
determines a directed graph where nodes are either primitive
gates or obviously synthesizable modules and edges are wires
connecting them.
• general synthesizability (or synthesizability for short) which

means that a description is either obviously synthesizable or
will become obviously synthesizable after elaboration.

Note that uniqueness of the graph does not imply a unique hardware
implementation (because there are different libraries and different
ways to implement a circuit even using a given library). Instead, it
means that there is a systematic and deterministic way to convert
the description to a graph representing the circuit. These definitions
are applicable to any hardware description language in general and
are implementation independent. This also means that descriptions
that are obviously synthesizable according to our definition should
be synthesizable by all sensible synthesis tools supporting the lan-
guage in which the description is written.

Applying this definition to Verilog, it is clear that, when free
from high level abstractions, well-formed structural Verilog de-
scriptions are obviously synthesizable. The same applies to FV as
well since it is a subset of structural Verilog: All well-formed FV
descriptions that are abstraction-free (in this case free from param-
eterized modules, conditionals, and for-loops) are obviously syn-
thesizable. An FV description is well-formed if it is syntactically
correct and satisfies a few conditions that are captured by our type
system as defined in the next section.

3. Type System
This section presents a type system for FV which defines synthe-
sizability. We show how to type check if-conditions and for-loop
constructs and we show what preprocessing computations are im-
plicitly embodied in a design that uses abstraction mechanisms
such as iterations, conditionals, and module parameters. In the
terminology of two-level languages, preprocessing2 is the level 0
computation, and the result after preprocessing is the level 1 com-
putation that is performed by the circuit. In a Verilog description,
there are relatively few places where preprocessing is required. In
FV, these are restricted to four places: 1) expressions passed as
module parameters, 2) conditional expressions in if statements,
3) expressions that relate to the bounds on for-loops, and 4) array
indices.

By convention, the typing judgment (generally of the form ∆ `
X) will be assumed to be a level 1 judgment. That is, it is checking
for validity of a description that has already been preprocessed. Ex-
pressions, however, may be computations that either are performed
during expansion or remain intact to become part of the prepro-
cessed description. For this reason, the judgment for expressions
will be annotated with a level n ∈ {0, 1} to indicate whether we

2 Despite the fact that the term preprocessing is often used to refer to rather
ad hoc tools like the C preprocessor (cpp), we prefer to use it for our
highly disciplined approach because it implicitly conveys the light weight,
unobtrusive quality that we hope our tool will enjoy.

are checking the expression for validity at level 0 or at level 1. This
annotation will appear in the judgment as a superscript on the turn-
style, i.e. `n.

3.1 Typing Environments
To define the type system we need the following auxiliary notions:

Module Type M ::= k 〈di〉i∈I

Operator Signatures Σ ∈ Πi. O× N× Ti → T

Level n ::= 0 | 1
Module Environment ∆ ::= [] | m : M :: ∆
Variable Environment Γ ::= [] | s : d t :: Γ | x : d t :: Γ
Level 1 Variable Env. Γ+ ::= [] | s : d t :: Γ+

A module type consists of the number of its parameters and a se-
quence of directions for ports. An operator signature is a function
that takes an operator, the level at which the operation is executed,
and the types of the operands and returns the type of the result. As
noted above, levels can be 0 or 1. A module environment associates
module names with their corresponding types while a variable en-
vironment associates variable names with their corresponding di-
rections and types. We do not have to keep level information in the
variable environment because we can differentiate between levels
syntactically. All signals and declared local variables (denoted by
s) are level 1 variables while parameters and for-loop variables
(denoted by x or y) are level 0 variables.

3.2 Typing Rules
Figure 1 defines the rules for the judgment ` p. A circuit descrip-
tion p is well-typed when this judgment is derivable. The typing
rules formalize the following requirements: A circuit description p
is typable when the declarations it contains produce a valid module
environment and the main module has a type that involves no mod-
ule parameters (T-Prog). Intuitively, this means that all the modules
are well-typed and the top module is not parameterized since this
module is automatically instantiated (recall that in FV, parameters
do not have default values).

The rules T-MEmpty and T-MSeq defines a well-typed module
sequence. Intuitively, the body of each module in the sequence must
be well-typed and then the module type environment is extended to
reflect this module’s type.

To type the body of a module, we check that each parallel state-
ment is typable in the context of the current module environment
(∆) and a new variable environment (Γ) composed of the formal
parameters and the local variables (T-Body). Local variables are
treated as inout signals, ports are considered to be of type wire,
and variables are added to Γ without specifying their levels since
these are syntacticly distinguishable.

The next set of rules is used to defines a well-typed parallel
statement based on its kind. We have four different cases: (1) For a
module instantiation, the rule (T-Mod) requires that the instantiated
module is found in the current module environment and has a
type compatible with the number of passed parameters and the
number and directions of passed signals. Note that the expressions
passed as module parameters (if any) must be typable as level 0
computations. (2) For an assignment, the rule (T-Assign) requires
that both LHS and RHS expressions are typable at level 1 since the
assignment is a computation performed by the synthesized circuit,
not during elaboration. The rule for assign is somewhat peculiar,
because it does not require that t1 and t2 are the same. The Verilog
type system does not enforce that wire sizes match because of the
padding semantics for wires of different sizes. (3) For a conditional,
the rule (T-If) requires the conditional expression to be typable
at level 0 with type int and that each of the parallel statements
forming the consequent and the alternative is typable at level 1.

` p
` 〈Di〉 : ∆ ∆(m) = 0 〈di〉

` 〈Di〉 m
(T−Prog)

∆ ` 〈Di〉 : ∆
∆ ` 〈〉 : []

(T−MEmpty)
∆ ` b : M m : M :: ∆ ` 〈Di〉 : ∆′

∆ ` module m b :: 〈Di〉 : m : M :: ∆′
(T−MSeq)

∆ ` b : M
{dj 6= ∅} Γ = 〈xi : {in} int〉] 〈sj : dj wire〉] 〈sk : {in, out} tk〉 {∆; Γ ` Pr}

∆ ` 〈xi〉 〈dj sj〉 is 〈tk sk〉 〈Pr〉 : |〈xi〉| 〈dj〉
(T−Body)

∆; Γ ` P

{Γ `0 ei : {in} int} ∆(m) = | 〈ei〉 | 〈dj〉
{Γ `1 lj : d′jtj} {dj ⊆ d′j}

∆; Γ ` m〈ei〉 〈lj〉
(T−Mod)

out ∈ d1 Γ `1 l : d1 t1
in ∈ d2 Γ `1 e : d2 t2

∆; Γ ` assign l e
(T−Assign)

Γ `0 e : {in} int
{∆; Γ ` Pi} {∆; Γ ` Pj}
∆; Γ ` if e then〈Pi〉else〈Pj〉

(T−If)

Γ, y : {in} int `0 e2, e3 : {in} int
Γ `0 e1 : {in} int {∆; Γ, y : {in} int ` Pi}

∆; Γ ` for(y = e1; e2; y = e3)〈Pi〉
(T−For)

Γ `n l : d t See Γ `n e : d t

Γ `n e : d t
Γ(s) = d t

Γ `1 s : d t
(T−Id)

Γ(s) = d t
Γ `0 e : {in} int

Γ `1 s[e] : d t
(T−Idx)

Γ(s) = d t
Γ `0 e1, e2 : {in} int
Γ `1 s[e1 : e2] : d t

(T−Rg)

Γ(x) = {in} int
Γ `n x : {in} int

(T−Par)
Γ `n v : {in} int

(T−Int)
{Γ `n ei : d ti}

Γ `n f〈ei〉 : {in} Σ|〈ei〉|(f, n, 〈ti〉)
(T−Op)

Figure 1. Type System

(4) For a loop, the rule (T-For) requires that the initialization, test,
and increment expressions are all typable at level 0. The test and
increment expressions require that the environment be extended to
include the counter variable as an integer (with direction {in}).

The rules for expressions are the most intricate. They allow LHS
values to be typed only at level 1 (T-Id, T-Idx and T-Rg). In the case
of T-Idx and T-Rg, the rules additionally require that the indices
be typable at level 0 with type int. The rules for T-Param, T-Int
and, T-Op always use {in} as the direction of the expression under
consideration since it is “readable”. The rule for operators (T-Op)
implicitly requires that the operator name and its associated typing
can be found in Σ.

By specifying which expressions need to be typable at level
0, these typing rules guarantee the static availability of all the
information needed to get rid of the abstractions during elaboration.
By doing so, the type system guarantees the success of elaboration
for all well-typed descriptions as well as the success of its synthesis
as will be shown in section 5.

3.3 Simplifying Assumptions
The type system leaves out two conditions that are necessary to
guarantee synthesizability:

• Termination of for-loops.
• Consistency of wire assignments (Each wire must be assigned

exactly once).

It is possible to add restrictions on for-loops to ensure termi-
nation and to use a linear type system to avoid inconsistent assign-
ments. Both issues, however, are orthogonal to the problems ad-
dressed by our type system and we expect that they can easily be
checked by other techniques. We choose not to include these checks
in our type system to avoid the associated complexity.

4. Operational Semantics for Preprocessing
We use a big-step operational semantics indexed by the level of
the computation to formally specify the preprocessing phase. The

specification dictates how expansion should be performed, what the
form of the preprocessed circuit descriptions should be, and what
errors can occur during preprocessing.

4.1 Substitution
A principal challenge in designing preprocessing systems is the
avoidance of accidental variable capture, which occurs when the
binding occurrence of a variable is changed during expansion. Sys-
tems such as the C preprocessor (cpp) are seen as fragile because
they do not avoid accidental capture. Preprocessing systems that
avoid accidental variable capture are called hygienic [11]. The key
to hygienic preprocessing is to employ a notion of substitution that
respects the binding structure of variables – using, for example,
free and bound variable conventions as in the lambda calculus [1].
Once the notion of substitution is defined correctly, no additional
renaming of signals is needed in the operational semantics. The
two central issues that must be treated with care are:

• Using the Barendregt convention for variables means assuming
that the set of free and bound variables in any meta-theoretic
expression are different. This makes the definition of substitu-
tion deceptively simple, as it requires that we implicitly perform
all renaming necessary to ensure that the condition on a set of
variables holds. This in turn requires,
• Being explicit about the difference between free and binding

occurrences of variables in FV. Free variables are relatively easy
to recognize from the grammar definition. The constructs that
bind variables are more subtle, and are module definitions and
for-loops. Their behavior as binding constructs is reflected in
the type system, and in particular by the way they extend the
typing environment.

In FV, preprocessing only substitutes level 0 variables (parame-
ters and for-loop indices) with their corresponding integral values.
Since values are distinct from variables, we do not need to worry
about accidental variable capture. Therefore, defining the substitu-
tion rules as shown in Figure 2 is a straightforward process. Ad-

P [x 7→ v] m〈ei〉〈li〉[x 7→ v] = m〈ei[x 7→ v]〉〈li[x 7→ v]〉
(assign l e)[x 7→ v] = assign l[x 7→ v] e[x 7→ v]
(if e then 〈Pi〉 else 〈Pj〉)[x 7→ v] = if e[x 7→ v] then 〈Pi[x 7→ v]〉 else 〈Pj [x 7→ v]〉
(for(y = e1; e2; y = e3) 〈Pi〉)[x 7→ v] = for(y = e1[x 7→ v]; e2[x 7→ v]; y = e3[x 7→ v]) 〈Pi[x 7→ v]〉

l[x 7→ v] See e[x 7→ v]

e[x 7→ v] s[x 7→ v] = s

s[e][x 7→ v] = s[e[x 7→ v]]
s[e1 : e2][x 7→ v] = s[e1[x 7→ v] : e2[x 7→ v]]
x[x 7→ v] = v
y[x 7→ v] = y if y 6= x
v′[x 7→ v] = v′

f〈ei〉[x 7→ v] = f〈ei[x 7→ v]〉

Figure 2. Substitution

ditionally, since the Barendregt convention is not hiding any com-
plexity, the implementation follows naturally. The only thing to be
aware of is the distinction between level 1 variables that should not
be affected by the substitution and level 0 variables that might be.
This distinction can easily be made by recording the level of each
variable in the abstract syntax tree while traversing the description.

4.2 Preprocessing
To model the possibility of errors during preprocessing, we define
the following auxiliary notion:

Possible Term X⊥ ::= X | err

This allows us to write p⊥ or e⊥ to denote a value that may either
be the constant err or a value from p or e, respectively.

Preprocessing is defined by the derivability of judgments of the
general form 〈Di〉 ` X

n
↪→ X⊥, 〈Dj〉. Intuitively, preprocessing

takes a sequence of module declarations 〈Di〉 and a term X and
produces a new sequence of specialized modules 〈Dj〉 and a pos-
sible term X⊥. When the 〈Di〉 or 〈Dj〉 components are irrelevant
to the judgment, they will simply be dropped. 〈Di〉 can be dropped
when we process an entity that does not require knowledge about
the modules available in the context, and 〈Dj〉 can be omitted when
we process an entity that cannot instantiate new modules. The value
of n can either be 1, to indicate preprocessing, or 0, to indicate eval-
uation.

Normal preprocessing is defined in Figure 3. These rules for-
malize the following: Preprocessing a circuit description (E-Prog)
starts by preprocessing the main module; other modules are instan-
tiated as needed. Preprocessing the body of the main module (E-
Body) involves preprocessing each of its statements. Preprocess-
ing a statement can involve instantiating several modules. All such
modules are aggregated (in order) and returned.

Preprocessing a module instantiation (E-Mod) generates a new
module representing a unique instance of the module definition.
Preprocessing the assignment statement (E-Assign) is trivial be-
cause all the work is done ahead of time by substitution. The rules
for if (E-IfTrue and E-IfFalse) are straightforward. Preprocessing
a for-loop (E-ForTrue and E-ForFalse) amounts to evaluating a
for-loop, except that the result of evaluation is a sequence of state-
ments rather than a modification of the global state.

Expressions that are at level 1 (E-Id, E-Idx, E-Rg, E-Int1, and
E-Op1) are preprocessed, and ones at level 0 (E-Int0 and E-Op0)
are evaluated normally. For expressions at level 0, the only active
rule in evaluation pertains to operator applications (E-Op0).

4.3 Preprocessing Errors
Defining abnormal cases is equally important. Figure 4 shows when
errors can occur during preprocessing. Namely, when any of the
following situations occur:

1. Elaborating a circuit description:

(a) The main module is not defined (E-PE1).

(b) An error occurs while elaborating its body given all other
module definitions (E-PE2).

2. Elaborating the main module body:

(a) The main module has a non-empty parameter sequence (E-
BE1).

(b) Elaborating any of the parallel statements in the body gen-
erates an error (E-BE2).

3. Elaborating a module instantiation:

(a) Any expression passed as a parameter fails to evaluate (E-
ME1).

(b) Any LHS expression passed as a port connection fails to
elaborate (E-ME2).

(c) There is no corresponding module definition (E-ME3).

(d) The number of parameters passed is not correct (E-ME4).

(e) The number signals passed is not correct (E-ME5).

(f) An error occurs while elaborating any of the parallel mod-
ules composing the body of the instantiated module (E-
ME6).

4. Elaborating an assignment:

(a) An error occurs while elaborating its left hand side (E-
AssignE1).

(b) An error occurs while elaborating its right hand side (E-
AssignE2).

5. Elaborating a conditional statement:

(a) The conditional expression cannot be evaluated (E-IfE).

(b) The conditional expression evaluates to true and any of the
parallel statements of the consequent cannot be elaborated
(E-IfTrueE).

(c) The conditional expression evaluates to false and any of the
parallel statements of the alternative cannot be elaborated
(E-IfFalseE).

6. Elaborating loops:

p
1

↪→ p⊥
module m b ∈ 〈Di〉 〈Di〉 ` b

1
↪→ b′, 〈Dr〉

〈Di〉m
1

↪→ 〈Dr〉] 〈module m b′〉m
(E−Prog)

〈D〉 ` b
1

↪→ b⊥, 〈D〉
{〈Di〉 ` Pk

1
↪→ 〈Pr〉r∈R(k), 〈Dh〉h∈H(k)}

〈Di〉 ` 〈〉〈dj sj〉 is 〈tq sq〉〈Pk〉
1

↪→ 〈〉〈dj sj〉 is 〈tq sq〉
]
k

〈Pr〉r∈R(k),
]
k

〈Dh〉h∈H(k)
(E−Body)

〈D〉 ` P
1

↪→ 〈P⊥〉, 〈D〉

{ei
0

↪→ vi} {lj
1

↪→ l′j} module m 〈xi〉 〈dj sj〉 is 〈tq sq〉 〈Pk〉 ∈ 〈Di〉

{〈Di〉 ` Pk{[xi 7→ vi]}
1

↪→ 〈Pr〉r∈R(k), 〈Dh〉h∈H(k)} m′ /∈ 〈Di〉 m′ /∈
]
k

〈Dh〉h∈H(k)

〈Di〉 ` m〈ei〉〈lj〉
1

↪→ 〈m′〈〉〈l′j〉〉, 〈module m′ 〈〉 〈dj sj〉 is 〈tq sq〉
]
k

〈Pr〉r∈R(k)〉]
]
k

〈Dh〉h∈H(k)
(E−Mod)

l
1

↪→ l′ e
1

↪→ e′

〈Di〉 ` assign l e
1

↪→ 〈assign l′ e′〉, 〈〉
(E−Assign)

e
0

↪→ v v 6= 032 {〈Di〉 ` Pk
1

↪→ 〈Pr〉r∈R(k), 〈Dh〉h∈H(k)}

〈Di〉 ` if e then 〈Pk〉 else 〈Pj〉
1

↪→
]
k

〈Pr〉r∈R(k),
]
k

〈Dh〉h∈H(k)
(E−IfTrue)

e
0

↪→ 032 {〈Di〉 ` Pj
1

↪→ 〈Pr〉r∈R(j), 〈Dh〉h∈H(j)}

〈Di〉 ` if e then 〈Pk〉 else 〈Pj〉
1

↪→
]
j

〈Pr〉r∈R(j),
]
j

〈Dh〉h∈H(j)
(E−IfFalse)

e1
0

↪→ v1 e2[y 7→ v1]
0

↪→ v2 v2 6= 032

{〈Di〉 ` Pk[y 7→ v1]
1

↪→ 〈Pr〉r∈R(k), 〈Dh〉h∈H(k)}
〈Di〉 ` for(y = e3[y 7→ v1]; e2; y = e3) 〈Pk〉

1
↪→ 〈Pj〉, 〈Dq〉

〈Di〉 ` for(y = e1; e2; y = e3) 〈Pk〉
1

↪→
]
k

〈Pr〉r∈R(k)] 〈Pj〉,
]
k

〈Dh〉h∈H(k)] 〈Dq〉
(E−ForTrue)

e1
0

↪→ v e2[y 7→ v]
0

↪→ 032

〈Di〉 ` for(y = e1; e2; y = e3) 〈Pk〉
1

↪→ 〈〉, 〈〉
(E−ForFalse)

l
1

↪→ l⊥ See e
1

↪→ e⊥

e
1

↪→ e⊥
s

1
↪→ s

(E−Id)
e

0
↪→ v

s[e]
1

↪→ s[v]
(E−Idx)

e1
0

↪→ v1 e2
0

↪→ v2

s[e1 : e2]
1

↪→ s[v1 : v2]
(E−Rg)

v
1

↪→ v
(E−Int1)

{ei
1

↪→ e′i}

f〈ei〉
1

↪→ f〈e′i〉
(E−Op1)

e
0

↪→ e⊥
v

0
↪→ v

(E−Int0)
{ei

0
↪→ vi}

f〈ei〉
0

↪→ [[f]]〈vi〉
(E−Op0)

Figure 3. Operational Semantics

(a) The initialization expression fails to evaluate (E-ForE1).

(b) The condition expression fails to evaluate (E-ForE2).

(c) Any parallel statement in the body of the loop fails to elab-
orate (E-ForE3).

(d) The remaining loop iterations fail to elaborate (E-ForE4).

7. Elaborating an expression:

(a) It is a signal indexed by one or more expressions that fail to
evaluate (E-Idx1E and E-Rg1E).

(b) It is a parameter name (E-Par1E).

(c) It is composed of operations on expressions where at least
one fails to elaborate (E-Op1E).

8. Evaluating an expression:

(a) It is a signal (E-IdE, E-Idx0E and E-Rg0E).

(b) It is a parameter name (E-Par0E).

(c) It is composed of operations on expressions including at
least one that fail to evaluate (E-Op0E).

It is important to note that, because we use substitution to elimi-
nate level 0 variables, encountering any identifier during evaluation
constitutes a preprocessing error. This formalizes the property that
any dependency on either an uninstantiated parameter or a wire
value constitutes a preprocessing error.

Consider the following example where we have a main module
trying to instantiate two ripple adder modules, one of size four and
one of size s1.

module main();
wire cout1,cout2;
wire [3:0] a1,b1,a2,b2,s1,s2;

adder #(4) d1 (s1,cout1,a1,b1,0);
adder #(s1) d2 (s2,cout2,a2,b2,0);

endmodule

This is a typical example of a description that will fail to elabo-
rate. This is easy to see by looking at rule (E-ME1) because s1 will
fail to evaluate as defined by (E-IdE). This failure is expected be-
cause trying to instantiate a ripple-adder using s1 as a parameter is
equivalent to trying to create a ripple adder whose size is variable
depending on the output value from the first adder. Clearly this can-
not be physically realized. According to T-Mod, for this program to
be well-typed, s1 should be typable at level 0 with type {in} int
and, since there are no rules for typing a signal at level 0, our type
system can successfully detect that this program is not well-typed
and therefore not synthesizable.

As we will show in the next section, the type system guarantees
that none of these errors can occur.

5. Technical Results
We establish three theorems whose complete proofs are presented
in the technical report [3].

5.1 Preprocessing Produces Well-Typed Circuit Descriptions
We only need to define substitution on parallel statements. There-
fore we state the substitution lemma as follows:

Lemma 1 (Substitution). If ∆; Γ, x : d t ` P and Γ `n v : d t
then ∆; Γ ` P [x 7→ v]

Sketch. The proof proceeds by induction on the derivation of the
first judgment.

Using this lemma, we show that preprocessing of a well-typed
description produces a well-typed description. Formally:

Theorem 1 (Type Preservation). If ` p and p
1

↪→ p′ then ` p′

Sketch. The proof proceeds by induction on the derivation of the
second judgment.

While this is an important property, it still allows two undesir-
able behaviors that our type system forbids: First, it is possible for
preprocessing to produce the value err. Second, it is possible for
preprocessing to produce a value p′ that is not err, but still con-
tains constructs that we want synthesis to eliminate. The next two
results address these issues.

5.2 Preprocessing does not Depend on Wire Values (and is
Type Safe)

The most interesting cause of preprocessing errors in our setting is
when a preprocessing computation depends on a wire value. This
cannot occur for a well-typed term.

Theorem 2 (Type Safety). If ` p and p
1

↪→ p′ then p′ 6= err

Sketch. This result follows directly from Theorem 1 since no typing
rules will consider err well-typed.

5.3 Preprocessing Produces Fully Expanded Terms
To show that preprocessing produces fully expanded terms, we
must formalize this notion. The set of fully expanded terms is
defined as follows:

Expanded Term X̂ =

{u | u ∈ X⊥ ∧ Y ∈ subterms(u)⇒

((Y = 〈xi〉i∈I 〈dj sj〉j∈J is 〈tk yk〉k∈K 〈Pr〉r∈R ⇒ I = ∅)
∧ (Y = m 〈ei〉i∈I 〈lj〉j∈J ⇒ I = ∅)
∧ (Y 6= if e then〈Pi〉i∈Ielse〈Pj〉j∈J)

∧ (Y 6= for(y = e; e; y = e)〈Pi〉i∈I))}

The above definition formally states that for a term to be fully
expanded it has to satisfy the following four conditions:

• If it contains a module declaration, the module must not have
parameters.
• If it contains a module instantiation, then the instantiation must

not pass any parameters.
• It cannot contain for-loops.
• It cannot contain if-statements.

Note that err is considered to be a fully expanded term since it
does not include any abstractions.

Theorem 3 establishes the soundness of preprocessing which
refers to the property that elaboration produces fully expanded
descriptions.

Theorem 3 (Preprocessing Soundness). If p
1

↪→ p′ then p′ ∈ p̂

Sketch. The proof proceeds by induction on the derivation of the
first judgment.

As stated in Section 2.4, well-typed FV programs free from ab-
stractions are obviously synthesizable. Combining this observation
with the last three theorems means that we can use our type system
to check for the synthesizability of a circuit description statically
prior to elaboration: If an FV program is well-typed, Theorem 2
says its elaboration will not produce an error and Theorems 1 and
3 say that the result will be abstraction-free and well-typed. The re-
sult of elaborating a well-typed FV program is therefore obviously
synthesizable.

6. Experimental Results
This section summarizes the main results from our experience with
implementing and using the ideas proposed in this paper.

6.1 Implementation
A prototype implementation of the Verilog Pre-Processor (VPP) is
available for download at http://www.resource-aware.org/
twiki/bin/view/RAP/VPP. VPP includes a type checker based
on the typing rules defined in this paper. If the description con-
tains abstractions, VPP’s type checker determines whether they are
used in a synthesizable manner. If the given description is proved
synthesizable, then it is elaborated into an equivalent, obviously
synthesizable description using the expansion rules defined in this
document.

p
1

↪→ p⊥
module m b /∈ 〈Di〉

〈Di〉m
1

↪→ err

(E−PE1)
module m b ∈ 〈Di〉 〈Di〉 ` b

1
↪→ err, 〈〉

〈Di〉m
1

↪→ err

(E−PE2)

〈D〉 ` b
1

↪→ b⊥, 〈D〉
I 6= ∅

〈Di〉 ` 〈xi〉i∈I〈dj sj〉 is 〈tq sq〉〈Pk〉
1

↪→ err, 〈〉
(E−BE1)

∃k.〈Di〉 ` Pk
1

↪→ 〈err〉, 〈〉

〈Di〉 ` 〈〉〈dj sj〉 is 〈tq sq〉〈Pk〉
1

↪→ err, 〈〉
(E−BE2)

〈D〉 ` P
1

↪→ 〈P⊥〉, 〈D〉
∃i.ei

0
↪→ err

〈Di〉 ` m〈ei〉〈lj〉
1

↪→ 〈err〉, 〈〉
(E−ME1)

∃j.li
1

↪→ err

〈Di〉 ` m〈ei〉〈lj〉
1

↪→ 〈err〉, 〈〉
(E−ME2)

module m 〈xi〉 〈dj sj〉 is 〈tq sq〉 〈Pk〉 /∈ 〈Di〉

〈Di〉 ` m〈ei〉〈lj〉
1

↪→ 〈err〉, 〈〉
(E−ME3)

module m 〈xr〉 〈dh sh〉 is 〈tq sq〉 〈Pk〉 ∈ 〈Di〉 | 〈ei〉 | 6= | 〈xr〉 |

〈Di〉 ` m〈ei〉〈lj〉
1

↪→ 〈err〉, 〈〉
(E−ME4)

module m 〈xi〉 〈dh sh〉 is 〈tq sq〉 〈Pk〉 ∈ 〈Di〉 | 〈lj〉 | 6= | 〈dh sh〉 |

〈Di〉 ` m〈ei〉〈lj〉
1

↪→ 〈err〉, 〈〉
(E−ME5)

{ei
0

↪→ vi} module m 〈xi〉 〈dj sj〉 is 〈tq sq〉 〈Pk〉 ∈ 〈Di〉 ∃k.〈Di〉 ` Pk{[xi 7→ vi]}
1

↪→ 〈err〉, 〈〉

〈Di〉 ` m〈ei〉〈lj〉
1

↪→ 〈err〉, 〈〉
(E−ME6)

l
1

↪→ err

〈Di〉 ` assign l e
1

↪→ 〈err〉, 〈〉
(E−AssignE1)

e
1

↪→ err

〈Di〉 ` assign l e
1

↪→ 〈err〉, 〈〉
(E−AssignE2)

e
0

↪→ err

〈Di〉 ` if e then 〈Pk〉 else 〈Pj〉
1

↪→ 〈err〉, 〈〉
(E−IfE)

e
0

↪→ v v 6= 032 ∃k.〈Di〉 ` Pk
1

↪→ err

〈Di〉 ` if e then 〈Pk〉 else 〈Pj〉
1

↪→ 〈err〉, 〈〉
(E−IfTrueE)

e
0

↪→ 032 ∃j.〈Di〉 ` Pj
1

↪→ err

〈Di〉 ` if e then 〈Pk〉 else 〈Pj〉
1

↪→ 〈err〉, 〈〉
(E−IfFalseE)

e1
0

↪→ err

〈Di〉 ` for(y = e1; e2; y = e3) 〈Pk〉
1

↪→ 〈err〉, 〈〉
(E−ForE1)

e1
0

↪→ v1 e2[y 7→ v1]
0

↪→ err

〈Di〉 ` for(y = e1; e2; y = e3) 〈Pk〉
1

↪→ 〈err〉, 〈〉
(E−ForE2)

e1
0

↪→ v1 ∃k.〈Di〉 ` Pk[y 7→ v1]
1

↪→ err

〈Di〉 ` for(y = e1; e2; y = e3) 〈Pk〉
1

↪→ 〈err〉, 〈〉
(E−ForE3)

e1
0

↪→ v1 〈Di〉 ` for(y = e3[y 7→ v1]; e2; y = e3) 〈Pk〉
1

↪→ 〈err〉, 〈〉

〈Di〉 ` for(y = e1; e2; y = e3) 〈Pk〉
1

↪→ 〈err〉, 〈〉
(E−ForE4)

l
1

↪→ l⊥ See e
1

↪→ e⊥

e
1

↪→ e⊥
e

0
↪→ err

s[e]
1

↪→ err

(E−Idx1E)
∃i.ei

0
↪→ err

s[e1 : e2]
1

↪→ err

(E−Rg1E)
x

1
↪→ err

(E−Par1E)
∃i.ei

1
↪→ err

f〈ei〉
1

↪→ err

(E−Op1E)

e
0

↪→ e⊥
s

0
↪→ err

(E−IdE)
s[e]

0
↪→ err

(E−Idx0E)
s[e1 : e2]

0
↪→ err

(E−Rg0E)
x

0
↪→ err

(E−Par0E)

∃i.ei
0

↪→ err

f〈ei〉
0

↪→ err

(E−Op0E)

Figure 4. Operational Semantics Errors

VPP supports a larger subset of Verilog than FV. To do so, we
extended our type checking rules and elaboration semantics to sup-
port the additional constructs while maintaining the distinction be-
tween values that must be known at elaboration time and those that
are not. We were able to extend the same two-level approach to the
larger subset. The complexity of the concrete syntax caused sev-
eral engineering problems. For example, the type and direction of
a module port can be specified inside the body of a module instead
of in the module declaration. Initializing the ports’ directions and
types to unknown values in the typing environment and updating
them while traversing the parsed syntax tree was a simple solution
to this problem. VPP also supports behavioral constructs, but does
not provide guarantees about their synthesizability since this is im-
plementation dependent.

6.2 Abstractions in Practice
We re-factored several industrial hardware descriptions from [12,
14] to use higher level abstractions. Comparing the re-factored code
to the original shows that using abstraction can cut the number of
lines in half, as depicted in Table 1. Of course, being multipliers,
these circuits are highly regular and therefore are particularly suit-
able to show the usefulness of the abstractions we are talking about.
But designing multipliers is still a formidable engineering chal-
lenge where engineers use all the help they can get to make the
task more tractable.

The results included here are a preliminary experimental results
that demonstrates that using abstractions is valuable in practical
examples not only for the simple circuits such as ripple adders
presented earlier. These results can be significantly improved by
using higher level of abstractions such as type abstractions.

Using Percentage
Circuit Original Abstractions Saved
OpenRISC 1200’s
32x32 multiplier [14] 2538 1405 44.6%

OpenSPARC T1’s
64x64 multiplier [12] 2510 1167 53.5%

Table 1. Impact of abstraction on code size (in lines).

7. Conclusions and Future Work
This paper has argued the pressing need for expressive, well-
defined preprocessing constructs in hardware description lan-
guages, and showed that a hardware description language with
such constructs can be understood as a statically typed two-level
language. We focused on one of the most basic properties of a
circuit description, namely that it corresponds to a synthesizable
circuit. We presented Featherweight Verilog (FV), a core calculus
(syntax, type system, and preprocessing semantics) that shows how
preprocessing constructs can be developed in the context of a revi-
sion of a mainstream hardware description language (Verilog). We
formalized three technical properties that capture the key features
of our calculus, and imply that well-typed FV programs can always
be successfully elaborated into well-typed, obviously synthesizable
circuit descriptions.

In future work, we intend to enrich the underlying type system
to capture physical features of the hardware design, including area,
timing, and power requirements.

Acknowledgments
We would like to thank Yousra Alkabani for many valuable discus-
sions about Verilog.

References
[1] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics,

volume 103 of Studies in Logic and the Foundations of Mathematics.
North-Holland, Amsterdam, 1984.

[2] Bluespec, Inc. Bluespec SystemVerilog Version 3.8 Reference Guide,
2006.

[3] Jennifer Gillenwater, Gregory Malecha, Cherif Salama, Angela Yun
Zhu, Walid Taha, Jim Grundy, and John O’Leary. Synthesiz-
able High Level Hardware Descriptions. Technical report, Rice
University and Intel Strategic CAD Labs, http://www.resource-
aware.org/twiki/pub/RAP/VPP/FV-TR.pdf, 2007.

[4] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the
untyped lambda-calculus. Journal of Functional Programming,
1(1):21–69, 1991.

[5] IEEE Standards Board. IEEE Standard Hardware Description
Language Based on the Verilog Hardware Description Language.
Number 1364-1995 in IEEE Standards. IEEE, 1995.

[6] IEEE Standards Board. IEEE Standard Verilog Hardware Description
Language. Number 1364-2001 in IEEE Standards. IEEE, 2001.

[7] IEEE Standards Board. IEEE Standard for SystemVerilog-Unified
Hardware Design, Specification, and Verification Language. Number
1800-2005 in IEEE Standards. IEEE, 2005.

[8] IEEE Standards Board. IEEE Standard for Verilog Hardware
Description Language. Number 1364-2005 in IEEE Standards.
IEEE, 2005.

[9] IEEE Standards Board. IEEE Standard for Verilog Register Transfer
Level Synthesis. Number 1364.1-2002 (IEC 62142:2005) in IEEE
Standards. IEEE, 2005.

[10] Oleg Kiselyov, Kedar Swadi, and Walid Taha. A methodology
for generating verified combinatorial circuits. In the International
Workshop on Embedded Software (EMSOFT ’04), LNCS, Pisa, Italy,
2004. ACM.

[11] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and
Bruce Duba. Hygienic macro expansion. ACM Conference on LISP
and Functional Programming, pages 151–161, 1986.

[12] Sun Microsystems. Opensparc t1 processor file: mul64.v. http://open
sparc-t1.sunsource.net/nonav/source/verilog/html/mul64.v.

[13] Flemming Nielson and Hanne Riis Nielson. Two-level semantics and
code generation. Theoretical Computer Science, 56(1):59–133, 1988.

[14] Opencores.org. Or1200’s 32x32 multiply for asic. http://www.opencores.
org/cvsweb.shtml/or1k/or1200/rtl/verilog/or1200 amultp2 32x32.v.

[15] Oregon Graduate Institute Technical Reports. P.O. Box 91000,
Portland, OR 97291-1000, USA. Available online from:
ftp://cse.ogi.edu/pub/tech-reports/README.html.

[16] Walid Taha. Multi-Stage Programming: Its Theory and Applications.
PhD thesis, Oregon Graduate Institute of Science and Technology,
1999. available from [15].

[17] Walid Taha, Stephan Ellner, and Hongwei Xi. Generating imperative,
heap-bounded programs in a functional setting. In Proceedings of the
Third International Conference on Embedded Software, Philadelphia,
PA, 2003.

[18] Walid Taha and Patricia Johann. Staged notational definitions. In
Krzysztof Czarnecki, Frank Pfenning, and Yannis Smaragdakis,
editors, Generative Programming and Component Engineering
(GPCE), Lecture Notes in Computer Science. Springer-Verlag, 2003.

[19] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

