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Dependency model with valence (Klein and Manning, ACL 2004)
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Traditional objective optimization

Traditional optimization: expectation maximization (EM)

Problem: EM may learn a very ambiguous grammar

V→ N should have non-zero probability, but . . .
V→ DET, V→ JJ, V→ PRP$, etc. should be 0
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Measuring ambiguity on distributions over trees
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Minimizing ambiguity through posterior regularization

E-Step qt(y | x) = arg min
q(y|x)

KL(q ‖ pθt )

+ σL1/∞(q(y | x))
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Experimental results

English from Penn Treebank: state-of-the-art accuracy

Accuracy

Learning Method ≤ 10 ≤ 20 all

EM 45.8 40.2 35.9

Sparsifying Dirichlet Prior 46.4 40.9 36.5

PR (σ = 140) 62.1 53.8 49.1

11 other languages from CoNLL-X:

Dirichlet prior baseline: 1.5% average gain over EM
Posterior regularization: 6.5% average gain over EM

Come see the poster for more details
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