Sparsity in Dependency Grammar Induction

Jennifer Gillenwater¹ Kuzman Ganchev¹ João Graça² Ben Taskar¹ Fernando Pereira³

¹Computer & Information Science University of Pennsylvania

²L²F INESC-ID, Lisboa, Portugal

³Google, Inc.

Dependency model with valence (Klein and Manning, ACL 2004)

Dependency model with valence (Klein and Manning, ACL 2004)

Traditional optimization: expectation maximization (EM)

- **Traditional optimization**: expectation maximization (EM)
- Problem: EM may learn a very ambiguous grammar
 - \blacksquare V \rightarrow N should have non-zero probability, but \ldots
 - \blacksquare V \rightarrow DET, V \rightarrow JJ, V \rightarrow PRP\$, etc. should be 0

Measuring ambiguity on distributions over trees

Measuring ambiguity on distributions over trees

Minimizing ambiguity through posterior regularization

$\begin{array}{ll} \textbf{E-Step} & q^t(\textbf{y} \mid \textbf{x}) = \argmin_{q(\textbf{y} \mid \textbf{x})} \textit{KL}(q \parallel p_{\theta^t}) \end{array}$

Minimizing ambiguity through posterior regularization

E-Step $q^{t}(\mathbf{y} \mid \mathbf{x}) = \underset{q(\mathbf{y} \mid \mathbf{x})}{\arg \min} KL(q \parallel p_{\theta^{t}}) + \sigma L_{1/\infty}(q(\mathbf{y} \mid \mathbf{x}))$

English from Penn Treebank: state-of-the-art accuracy

	Accuracy		
Learning Method	≤ 10	≤ 20	all
EM	45.8	40.2	35.9
Sparsifying Dirichlet Prior	46.4	40.9	36.5
$PR\;(\sigma=140)$	62.1	53.8	49.1

English from Penn Treebank: state-of-the-art accuracy

	Accuracy		
Learning Method	≤ 10	≤ 20	all
EM	45.8	40.2	35.9
Sparsifying Dirichlet Prior	46.4	40.9	36.5
$PR\;(\sigma=140)$	62.1	53.8	49.1

- 11 other languages from CoNLL-X:
 - Dirichlet prior baseline: 1.5% average gain over EM
 - Posterior regularization: 6.5% average gain over EM

English from Penn Treebank: state-of-the-art accuracy

	Accuracy		
Learning Method	≤ 10	≤ 20	all
EM	45.8	40.2	35.9
Sparsifying Dirichlet Prior	46.4	40.9	36.5
$PR\;(\sigma=140)$	62.1	53.8	49.1

- 11 other languages from CoNLL-X:
 - Dirichlet prior baseline: 1.5% average gain over EM
 - Posterior regularization: 6.5% average gain over EM
- Come see the poster for more details