# NEAR-OPTIMAL MAP INFERENCE FOR DETERMINANTAL POINT PROCESSES 

Jennifer Gillenwater Alex Kulesza Ben Taskar University of Pennsylvania

## IMAGE SEARCH: "JAGUAR"

Relevance only:


Relevance + diversity:


# TASK: SUBSET SELECTION 



## Task:

Given a set of documents, select a set of doc pairs such that: 1) the pairs are high-quality (docs within a pair are similar), and 2) the overall set of pairs is diverse.


Ground set: All possible (old, new) pairs.

- Old (topic = bailout): Let Detroit go bankrupt.
-New (topic = bailout) : I'm not willing to sit back and say 'Too bad for Michigan'.
-Old (topic = bailout): Let Detroit go bankrupt.
-New (topic = abortion): The right next step ... is to see Roe vs
Wade overturned.

Quality only:

- Old (topic = bailout): Let Detroit go bankrupt.
-New (topic = bailout): I'm not willing to sit back and say 'Too bad for Michigan'.
-Old (topic = bailout): I think there is need for economic stimulus.
-Old (topic = bailout): I have never supported the President's recovery act.

Old (topic = baillout): TARP ought to be ended.
New (topic = baillout): TARP got paid back and it kept
the financial system from collapsing.

Quality + diversity:
Old (topic = bailout): Let Detroit go bankrupt.
-New (topic = bailout): I'm not willing to sit back and say 'Too bad for Michigan'.
-OId (topic = abortion): I will preserve and protect a woman's right to choose.
-New (topic = abortion): The right next step ... is to see Roe vs Wade overturned.

Old (topic = gun control): I just signed a major piece of legislation extending the ban on certain assault weapons. -New (topic = gun control): I do not support any new legislation of an assault weapon ban nature.

## FORMALIZING


feature space

## FORMALIZING


feature space

FORMALIZING

feature space

## AREA AS A DET

$$
\|g(i)\|^{2}\|g(j)\|^{2}-\left(g(i)^{\top} g(j)\right)^{2}
$$

$=\operatorname{det}\binom{\|g(i)\|^{2} g(i)^{\top} g(j)}{g(i)^{\top} g(j)\|g(j)\|^{2}}$


## AREA AS A DET

$$
\|g(i)\|^{2}\|g(j)\|^{2}-\left(g(i)^{\top} g(j)\right)^{2}
$$

$=\operatorname{det}\binom{\|g(i)\|^{2} g(i)^{\top} g(j)}{g(i)^{\top} g(j)\|g(j)\|^{2}}$
$=\operatorname{det}\left(\begin{array}{l}-g(i)- \\ -g(j)-\end{array}\right.$

)

## VOLUME AS A DET

"goodness" of $\{i, j\}=$ quality \& diversity of $\{i, j\}$

$$
\begin{aligned}
& \propto \text { area }(\{i, j\})^{2} \\
& \text { volume }_{1}=\text { length } \\
& \text { volume }_{2}=\text { area } \\
& \text { volume }_{3}=3 \text {-volume }
\end{aligned}
$$

$$
|Y|=d \rightarrow \operatorname{volume}_{d}(Y)^{2} \propto \operatorname{det}\left(\left(G G^{\top}\right)_{Y}\right)
$$

for positive semi-definite $L=G G^{\top}$

$$
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)
$$


"goodness" of $\{i, j\}=$ quality Activersity of $\{i, j\}$


## VOLUME AS A DET

"goodness" of $\{i, j\}=$ quality \& diversity of $\{i, j\}$ $\propto \operatorname{area}(\{i, j\})^{2}$


$$
|Y|=d \rightarrow \operatorname{volume}_{d}(Y)^{2} \propto \operatorname{det}\left(\left(G G^{\top}\right)_{Y}\right)
$$

for positive semi-definite $L=G G^{\top}$

$$
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)
$$

## DPP INFERENCE

- Exact and efficient $O\left(N^{3}\right)$
- normalization: $\sum_{Y} \operatorname{det}\left(L_{Y}\right)=\operatorname{det}(L+I)$
- marginalization: $\mathcal{P}(A \subseteq Y)$
- conditioning: $\mathcal{P}(A \mid B \subseteq Y)$
- sampling: $Y \sim \mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)$


## DPP INFERENCE

What about DPP MAP? $\arg \max _{Y} \operatorname{det}\left(L_{Y}\right)$

##  <br> All points

$$
g(i)^{\top} g(j)=L_{i j}=\exp \left(-\left\|p_{i}-p_{j}\right\|^{2}\right)
$$




Independent sample


DPP (approx) MAP

# SUBMODULARITY TOTHE RESCUE <br> $f(Y)=\operatorname{det}\left(L_{Y}\right)$ is $\log$-submodular 

Diminishing returns:

$$
\begin{gathered}
\frac{f(Y \cup\{k\})}{f(Y)} \leq \frac{f(X \cup\{k\})}{f(X)} \\
X \subseteq Y, k \notin Y
\end{gathered}
$$

$$
\frac{\operatorname{vol}(X \cup\{k\})}{\operatorname{vol}(X)}=\frac{b_{1} h_{1}}{b_{1}}=h_{1}
$$



$$
\frac{\operatorname{vol}(X \cup\{k\})}{\operatorname{vol}(X)}=\frac{b_{1} h_{1}}{b_{1}}=h_{1}
$$



$$
\frac{\operatorname{vol}(Y \cup\{k\})}{\operatorname{vol}(Y)}=\frac{b_{2} h_{2}}{b_{2}}=h_{2}
$$

## $\frac{\operatorname{vol}(X \cup\{k\})}{\operatorname{vol}(X)}$



$$
\begin{gathered}
\text { MONOTONICITY } \\
\quad X \subseteq Y \Longrightarrow f(X) \leq f(Y)
\end{gathered}
$$

Det is non-monotone: $\operatorname{det}\left(L_{X}\right)>\operatorname{det}\left(L_{Y}\right)$ for some $X, Y$


## PRIOR WORK

## Monotone:

"greedy" (1-1/e)-approx

## Nemhauser and Wolsey (1978)

## Non-monotone:

"symmetric greedy"1/2-approx Buchbinder et al. (20|2)

Performs poorly in practice

## Non-monotone + constraints:

"multilinear" $1 / 4$-approx sans constraints,
various (lesser) guarantees dependent on constraint type Chekuri et al. (2011)

## PRIOR WORK

## Non-monotone + constraints:

"multilinear" $1 / 4$-approx sans constraints,
various (lesser) guarantees dependent on constraint type Chekuri et al. (201 I)
$\arg \max _{Y} \operatorname{det}\left(L_{Y}\right)$

$$
\arg \max _{Y \in S} \operatorname{det}\left(L_{Y}\right)
$$

where $S$ is a solvable polytope

## IMAGE COMPARISON WITH CONSTRAINTS



Point set 1


$Y \in$ matching polytope


## CHEKURI ET AL. 20II

## Step 1: Relax inclusion-exclusion



$$
\begin{gathered}
Y=\{2,4\} \\
\mathbf{x}=[0,1,0,1] \\
x_{i} \in[0,1]
\end{gathered}
$$

## CHEKURI ET AL. 20II

Step 2: Extend objective

$$
\begin{gathered}
F(\mathbf{x})=E_{\mathbf{x}}[\log \underset{\downarrow}{f(Y)}] \quad \text { multilinear extension } \\
\log \text {-submodular, like } \operatorname{det}\left(L_{Y}\right)
\end{gathered}
$$

## CHEKURI ET AL. 20II

Step 2: Extend objective

$$
\begin{aligned}
& F(\mathbf{x})=E_{\mathbf{x}}[\log f(Y)] \quad \text { multilinear extension } \\
&=\sum_{Y}\left[\prod_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right)\right. \\
& p_{Y}
\end{aligned}
$$

## CHEKURI ET AL. 20II

Step 2: Extend objective

$$
\begin{aligned}
F(\mathbf{x}) & =E_{\mathbf{x}}[\log f(Y)] \quad \text { multilinear extension } \\
& =\sum_{Y} \Pi_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right) \log f(Y) \\
& 2^{N} \text { subsets }
\end{aligned}
$$

## CHEKURI ET AL. 20II

Step 2: Extend objective

$$
\begin{aligned}
F(\mathbf{x}) & =E_{\mathbf{x}}[\log f(Y)] \quad \text { multilinear extension } \\
& =\sum_{\square} \prod_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right) \log f(Y) \\
& 2^{N} \text { subsets }
\end{aligned}
$$

Step 3: Optimize using gradient-based methods $\frac{\partial F(\mathbf{x})}{\partial \mathbf{x}}$ Step 4: If unconstrained, solution will already be integer; else, round solution: $x_{i} \in[0,1] \rightarrow x_{i} \in\{0,1\}$

## CHEKURI ET AL. 20II

Step 2: Extend objective

$$
\begin{aligned}
F(\mathbf{x}) & =E_{\mathbf{x}}[\log f(Y)] \quad \text { multilinear extension } \\
& =\sum_{Y} \prod_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right) \log f(Y) \\
& 2^{N} \text { subsets } \Longrightarrow \text { Monte Carlo required }
\end{aligned}
$$

Step 3: Optimize using gradient-based methods $\frac{\partial F(\mathbf{x})}{\partial \mathbf{x}}$ Step 4: If unconstrained, solution will already be integer; else, round solution: $x_{i} \in[0,1] \rightarrow x_{i} \in\{0,1\}$

## SOFTMAX EXTENSION

Multilinear: $F(\mathbf{x})=\sum_{Y} \prod_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right) \log f(Y)$
Softmax: $\quad \tilde{F}(\mathbf{x})=\log \sum_{Y} \prod_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right) f(Y)$

$$
N=2 \quad g(1) \not \prod_{g(2)}
$$

$$
g(1) \uparrow \prod_{g(2)}^{\boldsymbol{\wedge}}
$$

Relaxed domain


$$
g(1) \uparrow \overbrace{g(2)}^{\wedge}
$$

## Softmax extension

Multilinear extension


## Softmax extension

Multilinear extension


## Softmax extension

Multilinear extension


# SOFTMAX EXTENSION <br> $$
\tilde{F}(\mathbf{x})=\log \sum_{Y} \prod_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right) f(Y)
$$ 

## Theorem:

Efficiently computable for $f(Y)=\operatorname{det}\left(L_{Y}\right)$

$$
O\left(N^{3}\right)
$$

$$
\tilde{F}(\mathbf{x})=\operatorname{det}(\operatorname{diag}(\mathbf{x})(L-I)+I)
$$

Concave in all-positive/all-negative directions


Not necessarily concave in other directions


## APPROXIMATION GUARANTEE

Theorem: Concavity in all-positive directions + Submodularity $\Longrightarrow$
LOCAL OPT of $\tilde{F} \geq \frac{1}{4} \max _{\mathbf{x}} \tilde{F}(\mathbf{x}) \geq \frac{1}{4} \max _{Y} \log \operatorname{det}\left(L_{Y}\right)$
Theorem: In the unconstrained case, LOCAL OPT will be integer (no rounding necessary).

Constrained: No guarantees, but in practice pipage $\max _{Y \in S}$ rounding and thresholding work well.

## BASELINE

## Monotone:

"greedy" (1-1/e)-approx Nemhauser and Wolsey (1978)

Basic idea: Start from $Y=\{ \}$ and find the single item to add that most increases the score. Iterate until no remaining item increases the score.

## SYNTHETIC EXPERIMENTS

Unconstrained $\max _{Y}$


Constrained $\max _{Y \in S}$


## EFFECTIVENESS EVAL



Unconstrained $\max _{Y}$


Constrained $\max _{Y \in S}$

## EFFICIENCY EVAL

Naive greedy algorithm: $O\left(N^{5}\right)$
Optimized version: $O\left(N^{4}\right)$

## EFFICIENCY EVAL



Unconstrained $\max _{Y}$


Constrained $\max _{Y \in S}$

## MATCHED SUMMARIZATION

20 Republican primary debates


Average of 179 quotes per candidate

## MATCHED SUMMARIZATION


bowl base
friend nation middle-class
obama dividend interest way american indermpace amount Save american incom bowles-simpson COM hern scale rate reien relief empoy
exempt simpson incent democrat
capit percent


fact wealth CaOit code
deduct newt
percent way approach


-R1 (taxes): No tax on interest, dividends, or capital gains.
>R2 (law): We're not going to have Sharia law applied in U.S. courts. -R3 (healthcare): I will ... grant a waiver from Obamacare to all 50 states.
-R4 (aid): We're spending more on foreign aid than we ought to. ,R5(healthcare): If you think what we did in Massachusetts and what President Obama did are the same, boy, take a closer look.


S1 (taxes): I don't believe in a zero capital gains tax rate.
-S2 (taxes): Manufacture in America, you aren't going to pay any taxes. -S3 (aid): Zeroing out foreign aid ... that's absolutely the wrong course. $\mathbf{S 4}$ (ethanol): I voted against ethanol subsidies my entire time in Congress. ,S5 (healthcare): Obamacare ... is going to blow a hole in the budget.

## Matched summary

-R1 (taxes): No tax on interest, dividends, or capital gains. -S1 (taxes): I don't believe in a zero capital gains tax rate.
,R3 (healthcare): I will ... grant a waiver from Obamacare to all 50 states. -S5 (healthcare): Obamacare ... is going to blow a hole in the budget.
rR4 (aid): We're spending more on foreign aid than we ought to. -S3 (aid): Zeroing out foreign aid ... that's absolutely the wrong course.

## PERFORMANCE



## SUMMARY

## Efficient, effective approximate DPP MAP algorithm for subset selection problems

## Code + data:

http://www.seas.upenn.edu/~jengi/dpp-map.html

## SUMMARY

## Code + data:

http://www.seas.upenn.edu/~jengi/dpp-map.html

## Future work:

-Other applications:

- sensor selection
[A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian Processes, 2008.]
-text summarization
[H. Lin and J. Bilmes. Multi-Document Summarization via Budgeted Maximization of Submodular Functions, 20 I 0.]
- Other submodular functions for which the softmax extension is efficiently computable?


## Poster W35

