NEAR-OPTIMAL MAP INFERENCE FOR DETERMINANTAL POINT PROCESSES

Jennifer Gillenwater Alex Kulesza Ben Taskar University of Pennsylvania

IMAGE SEARCH: 'JAGUAR''

Relevance only:

Relevance + diversity:

TASK: SUBSET SELECTION

MATCHED SUMMARIZATION

Task:

Given a set of documents, select a set of doc pairs such that: 1) the pairs are high-quality (docs within a pair are similar), and 2) the overall set of pairs is diverse.

MATCHED SUMMARIZATION

Ground set: All possible (old, new) pairs.

Old (topic = bailout): Let Detroit go bankrupt.
New (topic = bailout) : I'm not willing to sit back and say 'Too bad for Michigan'.

Old (topic = bailout): Let Detroit go bankrupt.
New (topic = abortion): The right next step ... is to see Roe vs Wade overturned.

Quality only:

Old (topic = bailout): Let Detroit go bankrupt.
New (topic = bailout): I'm not willing to sit back and say 'Too bad for Michigan'.

•Old (topic = bailout): I think there is need for economic stimulus.

•Old (topic = bailout): I have never supported the President's recovery act.

 Old (topic = bailout): TARP ought to be ended.
 New (topic = bailout): TARP got paid back and it kept the financial system from collapsing.

Quality + diversity:

Old (topic = bailout): Let Detroit go bankrupt.
New (topic = bailout): I'm not willing to sit back and say
'Too bad for Michigan'.

Old (topic = abortion): I will preserve and protect a woman's right to choose.

New (topic = abortion): The right next step ... is to see Roe vs Wade overturned.

 Old (topic = gun control): I just signed a major piece of legislation extending the ban on certain assault weapons.
 New (topic = gun control): I do not support any new legislation of an assault weapon ban nature.

FORMALIZING

feature space

FORMALIZING

feature space

FORMALIZING

feature space

AREA AS A DET

 $||g(i)||^2 ||g(j)||^2 - (g(i)^\top g(j))^2$

$$= \det \left(\begin{array}{c} ||g(i)||^2 \ g(i)^\top g(j) \\ g(i)^\top g(j) \ ||g(j)||^2 \end{array} \right)$$

$$--g(1)--g(2)--$$

 \vdots
 $--g(N)--$

AREA AS A DET

 $||g(i)||^2 ||g(j)||^2 - (g(i)^\top g(j))^2$

$$= \det \left(\begin{array}{c} ||g(i)||^2 \ g(i)^\top g(j) \\ g(i)^\top g(j) \ ||g(j)||^2 \end{array} \right)$$

VOLUME AS A DET

- "goodness" of $\{i, j\}$ = quality & diversity of $\{i, j\}$ $\propto \operatorname{area}(\{i, j\})^2$
 - $volume_1 = length$ $volume_2 = area$ $volume_3 = 3D$ -volume

$$|Y| = d \rightarrow \operatorname{volume}_d(Y)^2 \propto \det((GG^{\top})_Y)$$

for positive semi-definite $L = GG^{\top}$ $\mathcal{P}(Y) \propto \det(L_Y)$

volume as a det "goodness" of $\{i, j\}$ = quality & diversity of $\{i, j\}$ $\propto \operatorname{area}(\{i,j\})^2$ $|Y| = d \rightarrow \text{volume}_d(Y)^2 \propto \det((GG^{\top})_Y)$

for positive semi-definite $L = GG^{\top}$ $\mathcal{P}(Y) \propto \det(L_Y)$

DPP INFERENCE

- Exact and efficient $O(N^3)$
 - normalization: $\sum_{Y} \det(L_Y) = \det(L+I)$
 - marginalization: $\mathcal{P}(A \subseteq Y)$
 - conditioning: $\mathcal{P}(A \mid B \subseteq Y)$
 - sampling: $Y \sim \mathcal{P}(Y) \propto \det(L_Y)$

DPP INFERENCE

What about DPP MAP? $\operatorname{arg\,max}_{Y} \det(L_{Y})$

$$g(i)^{\top}g(j) = L_{ij} = \exp(-||p_i - p_j||^2)$$

SUBMODULARITY TO THE RESCUE

 $f(Y) = \det(L_Y)$ is log-submodular

Diminishing returns:

 $\frac{f(Y \cup \{k\})}{f(Y)} \le \frac{f(X \cup \{k\})}{f(X)}$

 $X \subseteq Y, \ k \not\in Y$

$$\frac{\operatorname{vol}(X \cup \{k\})}{\operatorname{vol}(X)} = \frac{b_1 h_1}{b_1} = h_1$$

MONOTONICITY $X \subseteq Y \implies f(X) \le f(Y)$

Det is non-monotone: $det(L_X) > det(L_Y)$ for some X, Y

PRIOR WORK

Monotone:

"greedy" (1 - 1/e)-approx Nemhauser and Wolsey (1978)

Non-monotone:

"symmetric greedy" 1/2-approx Buchbinder et al. (2012)

Performs poorly in practice

Non-monotone + constraints:

"multilinear"1/4-approx sans constraints, various (lesser) guarantees dependent on constraint type *Chekuri et al. (2011)*

PRIOR WORK

Non-monotone + constraints:

"multilinear" 1/4-approx sans constraints, various (lesser) guarantees dependent on constraint type *Chekuri et al. (2011)*

$\arg \max_{Y} \det(L_{Y}) \longrightarrow \arg \max_{Y \in S} \det(L_{Y})$ where S is a solvable polytope

IMAGE COMPARISON WITH CONSTRAINTS

 $Y \in$ matching polytope

Step 1: Relax inclusion-exclusion

Step 2: Extend objective $F(\mathbf{x}) = E_{\mathbf{x}}[\log f(Y)]$ multilinear extension log-submodular, like det(L_Y)

Step 2: Extend objective $F(\mathbf{x}) = E_{\mathbf{x}}[\log f(Y)] \quad \text{multilinear extension}$ $= \sum_{Y} \underbrace{\prod_{i \in Y} x_i \prod_{i \notin Y} (1 - x_i)}_{p_Y} \log f(Y)$

Step 2: Extend objective

 $F(\mathbf{x}) = E_{\mathbf{x}}[\log f(Y)] \quad \text{multilinear extension}$ $= \sum_{Y} \prod_{i \in Y} x_i \prod_{i \notin Y} (1 - x_i) \log f(Y)$ $\downarrow^{2^N} \text{ subsets}$

Step 2: Extend objective

 $F(\mathbf{x}) = E_{\mathbf{x}}[\log f(Y)] \quad \text{multilinear extension}$ $= \sum_{Y} \prod_{i \in Y} x_i \prod_{i \notin Y} (1 - x_i) \log f(Y)$ $\downarrow^{N} \text{ subsets}$

Step 3: Optimize using gradient-based methods $\frac{\partial F(\mathbf{x})}{\partial \mathbf{x}}$ Step 4: If unconstrained, solution will already be integer; else, round solution: $x_i \in [0,1] \rightarrow x_i \in \{0,1\}$

Step 2: Extend objective

 $F(\mathbf{x}) = E_{\mathbf{x}}[\log f(Y)] \quad \text{multilinear extension}$ $= \sum_{Y} \prod_{i \in Y} x_i \prod_{i \notin Y} (1 - x_i) \log f(Y)$ \downarrow $2^N \text{ subsets } \Longrightarrow \text{(Monte Carlo required)}$

Step 3: Optimize using gradient-based methods $\frac{\partial F(\mathbf{x})}{\partial \mathbf{x}}$ Step 4: If unconstrained, solution will already be integer; else, round solution: $x_i \in [0,1] \rightarrow x_i \in \{0,1\}$

SOFTMAX EXTENSION

Multilinear: $F(\mathbf{x}) = \sum_{Y} \prod_{i \in Y} x_i \prod_{i \notin Y} (1 - x_i) \log f(Y)$ Softmax: $\tilde{F}(\mathbf{x}) = \log \sum_{Y} \prod_{i \in Y} x_i \prod_{i \notin Y} (1 - x_i) f(Y)$

$$N = 2 \qquad g(1) \iint g(2)$$

Relaxed domain

Softmax extension Multilinear extension

Softmax extension Multilinear extension

Softmax extension Multilinear extension

SOFTMAX EXTENSION

 $\tilde{F}(\mathbf{x}) = \log \sum_{Y} \prod_{i \in Y} x_i \prod_{i \notin Y} (1 - x_i) f(Y)$

Theorem:

Efficiently computable for $f(Y) = \det(L_Y)$ $O(N^3)$ $\tilde{F}(\mathbf{x}) = \det(\operatorname{diag}(\mathbf{x})(L-I) + I)$

Concave in all-positive/all-negative directions

Not necessarily concave in other directions

APPROXIMATION GUARANTEE

Theorem: Concavity in all-positive directions

+ Submodularity \longrightarrow

LOCAL OPT of $\tilde{F} \ge \frac{1}{4} \max_{\mathbf{x}} \tilde{F}(\mathbf{x}) \ge \frac{1}{4} \max_{Y} \log \det(L_Y)$

Theorem: In the unconstrained case, LOCAL OPT will be integer (no rounding necessary).

Constrained: No guarantees, but in practice pipage $\max_{Y \in S}$ rounding and thresholding work well.

BASELINE

Basic idea: Start from $Y = \{\}$ and find the single item to add that most increases the score. Iterate until no remaining item increases the score.

SYNTHETIC EXPERIMENTS

Unconstrained max_Y

Constrained $\max_{Y \in S}$

EFFECTIVENESS EVAL

EFFICIENCY EVAL

Naive greedy algorithm: $O(N^5)$ Optimized version: $O(N^4)$

EFFICIENCY EVAL

MATCHED SUMMARIZATION

20 Republican primary debates

Average of 179 quotes per candidate

MATCHED SUMMARIZATION

- R1 (taxes): No tax on interest, dividends, or capital gains.
- R2 (law): We're not going to have Sharia law applied in U.S. courts.
- **R3 (healthcare): I will ... grant a waiver from Obamacare to all 50 states.**
- •R4 (aid): We're spending more on foreign aid than we ought to.
- R5(healthcare): If you think what we did in Massachusetts and what President Obama did are the same, boy, take a closer look.

- S1 (taxes): I don't believe in a zero capital gains tax rate.
- S2 (taxes): Manufacture in America, you aren't going to pay any taxes.
- **S3 (aid): Zeroing out foreign aid ... that's absolutely the wrong course.**
- **S4 (ethanol): I voted against ethanol subsidies my entire time in Congress.**
- •S5 (healthcare): Obamacare ... is going to blow a hole in the budget.

Matched summary

R1 (taxes): No tax on interest, dividends, or capital gains.
S1 (taxes): I don't believe in a zero capital gains tax rate.

R3 (healthcare): I will ... grant a waiver from Obamacare to all 50 states.
S5 (healthcare): Obamacare ... is going to blow a hole in the budget.

R4 (aid): We're spending more on foreign aid than we ought to.
S3 (aid): Zeroing out foreign aid ... that's absolutely the wrong course.

Efficient, effective approximate DPP MAP algorithm for subset selection problems

Code + data:

http://www.seas.upenn.edu/~jengi/dpp-map.html

SUMMARY

Code + data:

http://www.seas.upenn.edu/~jengi/dpp-map.html

Future work:

•Other applications:

sensor selection

[A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian Processes, 2008.]

text summarization

[H. Lin and J. Bilmes. Multi-Document Summarization via Budgeted Maximization of Submodular Functions, 2010.]

•Other submodular functions for which the softmax extension is efficiently computable?

Poster W35