Near-Optimal MAP Inference for Determinantal Point Processes

Jennifer Gillenwater
Alex Kulesza
Ben Taskar

$\tilde{F}(\mathbf{x})=\log \sum_{Y} \prod_{i \in Y} x_{i} \prod_{i \notin Y}\left(1-x_{i}\right) f(Y)$
Efficiently computable for $f(Y)=\operatorname{det}\left(L_{Y}\right)$
$\tilde{F}(\mathbf{x})=\operatorname{det}(\operatorname{diag}(\mathbf{x})(L-I)+I)$
$\frac{\partial}{\partial x_{i}} \tilde{F}(\mathbf{x})=\operatorname{tr}\left((\operatorname{diag}(\mathbf{x})(L-I)+I)^{-1}(L-I)_{i}\right)$
APPROXIMATION GUARANTEE
Lemma: When $\mathbf{u}, \mathbf{v} \geq \mathbf{0}$, we have $\frac{\partial^{2}}{\partial s \mathrm{~s} \partial} \tilde{F}(\mathbf{x}+s \mathbf{u}+t \mathbf{v}) \leq 0$ whenever $\mathbf{0} \leq \mathbf{x}+s \mathbf{u}+t \mathbf{v} \leq \mathbf{v} \leq 1$.
Corollary: $\tilde{F}(\mathbf{x}+t \mathbf{v})$ is concave along any direction $\mathbf{v} \geq \mathbf{0}$.

Exact and efficient $O\left(N^{3}\right)$

- normalization: $\sum_{Y} \operatorname{det}\left(L_{Y}\right)=\operatorname{det}(L+I)$
- marginalization: $\mathcal{P}(A \subseteq Y)$
- conditioning: $\mathcal{P}(A \mid B \subseteq Y)$
- sampling: $Y \sim \operatorname{det}\left(L_{Y}\right)$

But: DPP MAP is NP-hard

$\frac{f(Y \cup\{k\})}{f(Y)} \leq \frac{f(X \cup\{k\})}{f(X)}$

Diminishing returns:
$X \subseteq Y, k \notin Y$
$\frac{\operatorname{vol}(g(i), g(j), g(k))}{\operatorname{vol}(g(i), g(j))}=\frac{b_{1} h_{1}}{b_{1}}=h_{1}$ $\frac{\mathrm{vol}(g(i), g(k))}{\operatorname{vol}(g(i))}=\frac{b_{2} h_{2}}{b_{2}}=h_{2}$

MONOTONICITY

Det is non-monotone: $\operatorname{det}\left(L_{X}\right)>\operatorname{det}\left(L_{Y}\right)$ for some X, Y

PRIOR WORK

SUBMODULARITY TO THE RESCUE $f(Y)=\operatorname{det}\left(L_{Y}\right)$ is \log-submodular

SYNTHETIC EXPERIMENTS
Constrained

MATCHED SUMMARIZATION

Average of 179 quotes per candidate
Task: Given statements made by candidate A and statements made by candidate B, select a set of pairs such that the two elements within a pair are similar, but the set of pairs is diverse.
Romney 1: No tax on interest, dividends, or capital gains.
 'Romney $3: 1$ will ... grant a waiver from Obawacare to all 50 states.
'Romney 4: Were spending more on foreign aid than we ought to. Romney 4: We're spending more on foreign aid than we ought to
Romney 5: If you think what we did in Massachusetts and what Romney 5 : If you think what we did in Massachusetts and w
 Santorum 2: M: Zeroing out foreign aid ... that's absolutely the wrong cours
'Sant 'Santorum 4: I voted against ethanol subsidies my entire time in co
'Santorum 5: Obamacare ... is going to blow a hole in the budget.

Code + Data: wwwr.seas.upenn.edu/

