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Abstract

A strong inductive bias is essential in unsupervised grammar induction. In this paper, we explore
a particular sparsity bias in dependency grammars that encourages a small number of unique de-
pendency types. We use part-of-speech (POS) tags to group dependencies by parent-child types
and investigate sparsity-inducing penalties on the posterior distributions of parent-child POS tag
pairs in the posterior regularization (PR) framework of Graça et al. (2007). In experiments with 12
different languages, we achieve significant gains in directed attachment accuracy over the standard
expectation maximization (EM) baseline, with an average accuracy improvement of 6.5%, outper-
forming EM by at least 1% for 9 out of 12 languages. Furthermore, the new method outperforms
models based on standard Bayesian sparsity-inducing parameter priors with an average improve-
ment of 5% and positive gains of at least 1% for 9 out of 12 languages. On English text in particular,
we show that our approach improves performance over other state-of-the-art techniques.

1. Introduction

We investigate unsupervised learning methods for dependency parsing models that impose sparsity
biases on the types of dependencies. We assume a corpus annotated with part-of-speech (POS) tags,
where the task is to induce a dependency model from the tag sequences for corpus sentences. In
this setting, thetypeof a dependency is defined as a simple pair: tag of the dependent (also known
as the child), and tag of the head (also known as the parent) for that dependent. Given that POS
tags are typically designed to convey information about grammatical relations,it is reasonable to
expect that only some of the possible dependency types would be realizedfor any given language.
For instance, it is ungrammatical for nouns to dominate verbs, adjectives to dominate adverbs, and
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determiners to dominate almost any part of speech. In other words, the realized dependency types
should be a sparse subset of all the possible types.

Previous work in unsupervised grammar induction has mostly focused on achieving sparsity
through priors on model parameters. For instance, Liang et al. (2007),Finkel et al. (2007) and John-
son et al. (2007) experimented with hierarchical Dirichlet process priors, and Headden III et al.
(2009) proposed a (non-hierarchical) Dirichlet prior. Such priors on parameters encourage a stan-
dard generative dependency parsing model (see Section 2) to limit the number of dependent types
for each head type. Although not focused on sparsity, several otherstudies use soft parameter shar-
ing to constrain the capacity of the model and hence couple different typesof dependencies. To this
end, Cohen et al. (2008) and Cohen and Smith (2009) investigated a (shared) logistic normal prior,
and Headden III et al. (2009) used a backoff scheme.

Our experiments (Section 6) show that the more effective sparsity pattern isone that limits the
total number of unique head-dependent tag pairs. Unlike sparsity-inducing parameter priors, this
kind of sparsity bias does not induce competition between dependent typesfor each head type.
Our experiments validate that this translates into accuracy improvements. In allexcept one of the
60 model settings we try for English, we observe higher accuracy than withthe bestsetting for a
parameter prior baseline. In our multi-lingual experiments, we similarly observe an average absolute
accuracy gain of 5%.

As we show in Section 4, we can achieve the desired bias with a sparsity constraint on model
posteriors, using the posterior regularization (PR) framework (Graça et al., 2007; Ganchev et al.,
2010). Specifically, to implement PR we augment the maximum likelihood objective ofthe gener-
ative dependency model with a term that penalizes distributions over head-dependent pairs that are
too permissive. We consider two choices for the form of the penalty, and show experimentally that
the following penalty works especially well: the model pays for the first time it selects a word with
tagc as a dependent of a head with tagp; after that, choosing a the same head tagp for any other
occurrence ofc is free. While Ravi et al. (2010) also attempt a direct minimization of tag pairs for a
supertagging application, they do so with a two-stage integer program that isapplied after likelihood
maximization is complete.

The remainder of this paper is organized as follows. Section 2 reviews the generative model
for dependency parsing. Section 3 illustrates why the expectation-maximization learning method
is insufficient and motivates sparse posteriors. Section 4 describes learning with PR constraints
and how to encode posterior sparsity under the PR framework. Section 5 summarizes previous
approaches that we compare to in our experiments, focusing in particular on attempts to induce
sparsity via a parameter prior. Section 6 describes the results of dependency parsing experiments
across 12 languages and against recent published state-of-the-artresults for the English language.
Section 7 analyzes these results, explaining why PR manages to learn whereother methods fail, and
Section 8 concludes. The model and all the code required to reproduce the experiments are available
online atcode.google.com/p/pr-toolkit, version 2010.11.

2. Parsing Model

The models we consider are based on the dependency model with valence (DMV) of Klein and
Manning (2004). We also investigate extensions to the DMV borrowed fromMcClosky (2008)
and Headden III et al. (2009). These extensions are not crucial to our experimental success with
posterior regularization, but we choose to explore them for better comparison with previous work.
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Figure 1: Example of a dependency tree with DMV probabilities. Right-dependents of a head are
denoted byr, left-dependents byl . The letterst and f denote ‘true’ and ‘false.’ For
example, inpstop( f | V, r, f ) the f to the left of the conditioning bar indicates that the
model has decidednot to stop, and the otherf indicatesV doesnot yet have any right
dependents. Note that thepstop(t | . . .) are omitted in this diagram.

As will be discussed in the experiments section, both for the basic and for theextended models
accuracy can be increased by applying posterior regularization. In thissection we briefly describe
the basic DMV model. Description of the extended models is deferred until the experiments section.

The DMV model specifies the following generative process. For a sentence consisting of POS
tagsx, the root head POSr(x) is generated first with probabilityproot(r(x)). For example, in Figure
1 this corresponds to generating theV with probability proot(V).

After generating the root, the model next generates dependents of the root. First, it generates
right dependents. It decides whether to produce a right dependent conditioned on the identity of
the root and the fact that it currently has no other right dependents. Inour example, this decision
is represented by the probabilitypstop( f | V, r, f ). If it decides to generate a right dependent, it
generates a particular dependent POS by conditioning on the fact that thehead POS isr(x) and that
the directionality is to the right. In our example, this corresponds to the probability pchild(N |V, r).
The model then returns to the choice of whether or not to stop generating right dependents, this
time conditioned on the fact that it already has at least one right dependent. In our example, this
corresponds to the probabilitypstop(t | V, r, t), which indicates that the model is done generating
right dependents ofV.

After stopping the generation of right dependents, the model generates left dependents using the
mirror image of the right-dependent process. Once the root has generated all of its dependents, the
dependents generate their own dependents in the same manner.

We follow the convention that the model generates dependents starting with therightmost one,
moving inward (leftward) until all right dependents are added, then it generates the leftmost left
dependent and moves inward (rightward) from there. This is exemplified inFigure 1, where the
leftmost dependent of the finalN is generated before the other left dependent. This convention has
no effect on the final probability of a parse tree under the basic DMV. However, as we will note in
the experiments section, it does affect dependency tree probabilities in theextended model.
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3. Learning with EM

The baseline for evaluating our sparse learning methods is the expectation maximization (EM) al-
gorithm (Dempster et al., 1977). Before the empirical comparison in Section 6, in we introduce here
some notation and review the EM algorithm. In what follows, we denote the entireunlabeled corpus
by X = {x1, . . . ,xn}, and a set of corresponding parses for each corpus sentence byY = {y1, . . . ,yn}.

The EM algorithm is a popular method for optimizing marginal likelihood:

L(θ) = log∑
Y

pθ(X,Y).

We briefly review the interpretation of the EM algorithm given by Neal and Hinton (1998), as
this interpretation best elucidates how the posterior regularization method we propose in Section 4
is a natural modification of the basic EM algorithm. Neal and Hinton (1998) viewEM as block
coordinate ascent on a function that lower-boundsL(θ). We form the lower bound, denotedF(q,θ),
by applying Jensen’s inequality toL(θ):

L(θ) = log∑
Y

q(Y)
pθ(X,Y)

q(Y)
≥∑

Y
q(Y) log

pθ(X,Y)

q(Y)
= F(q,θ).

Splitting up the log terms, we can then rewriteF(q,θ) as:

F(q,θ) = ∑
Y

q(Y) log(pθ(X)pθ(Y | X))−∑
Y

q(Y) logq(Y)

= L(θ)−∑
Y

q(Y) log
q(Y)

pθ(Y | X)

= L(θ)−KL (q(Y) ‖ pθ(Y | X)).

(1)

Based on this formulation, we can view EM as performing coordinate ascenton F(q,θ). Starting
from an initial parameter estimateθ0, the algorithm iterates two block coordinate ascent steps until
a convergence criterion is attained:

E : qt+1 = argmax
q

F(q,θt) = argmin
q

KL (q(Y) ‖ pθt (Y | X)),

M : θt+1 = argmax
θ

F(qt+1,θ) = argmax
θ

Eqt+1 [logpθ(X,Y)] . (2)

Note that the E-step just setsqt+1(Y) = pθt (Y|X), since it performs an unconstrained minimization
of a Kullback-Leibler divergence.

Figure 2 illustrates the large mismatch between an EM-trained DMV model and the empirical
statistics of dependency types. We will eventually show that posterior regularization reduces the
mismatch much more successfully than approaches based on parameter priors.

4. Learning with Sparse Posteriors

We stated in the introduction that posterior regularization makes gains over baseline methods such
as EM by inducing sparsity in the posteriors. Before discussing how to learn a model with sparse
posteriors, we wish to further motivate the idea. The main intuition behind our method is that a
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useful grammar should only allow a relatively small subset of all possible parent-child relations. If
we were asked to parse the tag sequenceDT ADJ N V, the dependency tree with V as root, N as its
child, and the remaining DT and ADJ as N’s children is almost forced on us. Yet, if the English
grammar allowed all possible parent-child relations, you would have had to consider 30 different
(projective) parse trees before selecting the correct one. Knowledge of unlikely relations simplifies
parsing for us. Thus, in this work we attempt to limit grammar ambiguity by inducing agrammar
that allows only a sparse set of possible dependency relation types.

Empirical evidence that good grammars have sparse coverage of the possible parent-child rela-
tions can be seen in Figure 2. The grid corresponding to supervised parameter settings has many
white squares, which illustrates that many parent-child relations should havezero posterior. Notice
also that while some parent tags can take many different child tags, some parent tags can take just
a few child tags, and some tags cannot be parents; the number of allowed child tags spans a wide
range. These empirical properties are not captured by previous attemptsto achieve model spar-
sity with hierarchical Bayesian models, which push eacheachparent tag to allow only a few child
tags. Instead, the modeling framework should simply favor models with high overall ratio of white
squares to blue squares.

The foregoing argument leads us to seek learning methods that will penalizelearned distribu-
tions pθ(Y|X) that predict a large number of distinct dependency types. In the next section, we
discuss different ways of counting dependency types, corresponding to slightly different measures
of ambiguity. In Section 4.3, we will explain how to use those measures as mixed-norm penalties
on distributions over dependency trees.

We will then discuss how to apply the posterior regularization (PR) framework (Graça et al.,
2007; Ganchev et al., 2010) to achieve the desired sparsity in grammar induction. The approach,
reviewed in Section 4.2, is closely related to generalized expectation constraints (Mann and McCal-
lum, 2007, 2008; Bellare et al., 2009), and is also indirectly related to a Bayesian view of learning
with constraints on posteriors (Liang et al., 2009). The PR framework uses constraints on poste-
rior expectations to help guide parameter estimation. It allows for tractable learning and inference
even when the constraints it enforces would be intractable to encode directly as additional model
parameters or structure. In particular, PR allows a natural representation of the dependency sparsity
constraints based on the ambiguity measures described below. For a more complete analysis of PR
and its application to a variety of NLP tasks, we refer the reader to Ganchevet al. (2010).

4.1 Measures of Ambiguity

We now describe precisely how to count dependency types, which will allow us to specify different
kinds of dependency sparsity. For each child tagc, let i range over some arbitrary enumeration of
all occurrences ofc in the corpus, and letp be another tag. The indicatorφcpi(X,Y) has value 1 if
p is the tag of the parent of theith occurrence ofc, and value 0 otherwise. The number of unique
dependency types is then given by:

∑
cp

max
i

φcpi(X,Y), (3)

where we sum over child-parent typescp, computing the maximum (logical or) over possible oc-
currences ofc← p dependencies. Note that there is an asymmetry in this way of counting types:
occurrences of the child typec are enumerated withi, but all occurrences of the parent typep are
or-ed inφcpi, that is,φcpi is 1 if anyoccurrence of tagp is the parent of theith occurrence of tagc.
See the top sentence in Figure 4 for an example of this; there the noun child in the POS sequence N
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X

cp

ξcp = 3

1

Figure 3: Theℓ1/ℓ∞ ambiguity measure for a toy example with gold parse trees. LetΦcpi =
Eq[φcpi]. For simplicity we ignore the root→ c edges here, though in our experiments
we incorporate their probabilities also.Left : Two gold parse trees with two (non-root)
children each. Edges in the trees have probability 1, and all other edges probability 0.
Right: Computation of the grammar ambiguity measure, which is 3 in this case. The
same result can also be obtained usingφcpi j instead.

V V is considered, and the probabilities of each of its possible parents are summed into one factor,
ΦNV1, since the parents are both of the same type (V). We use PR-AS, asymmetric PR, to refer to
PR training with constraints based on this ambiguity measure.

Instead of counting pairs of a child token and a parent type, we could instead have counted pairs
of a child token and a parent token by lettingp range over alltokensrather thantypes. In that case,
each potential dependency would correspond to a different indicatorφcpi j, and the penalty would be
symmetric with respect to parents and children. We use PR-S, symmetric PR, to refer to PR training
with constraints based on this measure. The number of unique dependencytypes in this case is
given by:

∑
cp

max
i, j

φcpi j(X,Y).

On actual dependency trees, where each child has a unique parent, PR-AS and PR-S always yield
the same value. However, the values may be different when working with distributions over edge
types instead, as exemplified in Figure 4. Both PR-AS and PR-S perform very well. One approach
is not clearly better than the other when compared across the twelve languages, so we report results
for both versions in the results section.

In addition to PR-AS and PR-S, there is in fact a third way of counting—another asymmetric
method. For PR-AS all parent tokens are collapsed, but we could also consider the case where all
child tokens are collapsed. Then the number of unique dependency typeswould be:

∑
cp

max
j

φcp j(X,Y).
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Figure 4: Theℓ1/ℓ∞ ambiguity measure for a toy example using edge posteriors. LetΦcpi =
Eq[φcpi], and similarlyΦcpi j = Eq[φcpi j]. For simplicity we ignore the root→ c edges
here, though in our experiments we incorporate their probabilities also. Thetwo POS
tag sequences considered are the same as in 3; we also consider the same four children
here for easy comparison. In this unsupervised setting, instead of gold trees we have
an example posterior distribution over parents for each child. We illustrate computation
of the grammar ambiguity measure for both PR-AS (left), and PR-S(right). Since real
grammars tend to have few edge types, it should make sense that theℓ1/ℓ∞ of the set of
supervised trees in 3 was smaller.

This type of counting leads however to some unintuitive results. For instance, consider a parse tree
consisting of a verb with two noun children. There,φNV1 = 2. This does not correspond to a count
of unique parent-child pairs, so it does not serve our ultimate goal as wellas PR-AS or PR-S. Hence,
we do not experiment with this ambiguity measure in this work.

4.2 Posterior Regularization

Having defined several ambiguity measures, we now step back and describe the general PR frame-
work. After this overview, we will show how to apply this general framework to penalize with
respect to the specific ambiguity measures we defined. In general, PR canbe seen as a penalty on
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the standard marginal log-likelihood objective, which we define first as:

Likelihood objective: L(θ) = logpθ(X)+ logp(θ)
= ∑

x∈X
[log∑

y
pθ(x,y)]+ logp(θ), (4)

whereθ represents the model parameters,p(θ) is a (optional) prior probability on the parameters,
and the sum is over the unlabeled sample data. Recall that we usex to denote a single sentence’s
POS tags, andy to denote a single hidden parse tree.

Here we present the penalty version of PR; Ganchev et al. (2010) describe a constraint-set ver-
sion of PR and give more details. In PR, the desired bias is specified with a penalty on expectations
of featuresφ. For any distributionq over latent variables, we can define a penalty as theβ-norm of
the feature expectations:

∣

∣

∣

∣Eq[φ(X,Y)]
∣

∣

∣

∣

β ,

whereY represents an assignment of parse trees for all sentences in the corpusX. For computational
tractability, rather than penalizing the model’s posteriors directly, we use an auxiliary distribution,
and penalize the marginal log-likelihood of a model by the KL-divergence and penalty term with
respect toq. For a fixed set of model parametersθ the PR penalty term we will use is given by:

Penalty term: min
q

KL (q(Y) ‖ pθ(Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]
∣

∣

∣

∣

β , (5)

whereσ is the strength of the regularization. As we will see, using an auxiliary distribution q will
make the final objective easier to optimize. Ganchev et al. (2010) describehow to compute this
penalty term in general, but we will defer that explanation to Section 4.3 whenwe describe our
particular penalty term. The PR framework seeks to maximize:

PR objective: J(θ) = L(θ)−min
q

[

KL (q(Y) ‖ pθ(Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]
∣

∣

∣

∣

β

]

. (6)

The objective in Equation 6 can be optimized by a variant of the EM algorithm (Dempster et al.,
1977) used to optimize the objective in Equation 4.

4.3 ℓ1/ℓ∞ Regularization

The previous section gave the penalty version of the PR objective in the general case. We will now
show how the ambiguity measures we want to incorporate fit into this framework. Specifically,
notice that we can view Equation 3 as a mixed-norm penalty on the featuresφcpi so that the generic
β from Equation 5 becomesℓ1/ℓ∞. More precisely, we will penalize the following quantity: the
sum (ℓ1 norm) overc of the maximum (ℓ∞ norm) over occurrences ofc of the posterior probability
of selecting a parent with tagp for that child. To compute the value of the PR objective and also to
optimize it, we need to compute the projection:

argmin
q

KL (q(Y)||pθ(Y|X))+σ∑
cp

max
i

Eq[φcpi(X,Y)],

which can equivalently be written as:

Projection : min
q,ξ

KL (q(Y) ‖ pθ(Y|X))+σ∑
cp

ξcp

s. t. ξcp≥ Eq[φcpi(X,Y)] ∀c, p, i,
(7)
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whereσ is the strength of the regularization, andξcp corresponds to the maximum expectation of
φcpi over allc andp. Note that the projection problem is convex inq and can be solved efficiently in
the dual (just as for the maximum entropy/log linear model fitting). The formulation of Equation 7
makes the derivation of the dual easier (see Ganchev et al., 2010 for a derivation of the dual in the
general case). The dual of the projection problem is a fairly simple convex optimization problem
with simplex constraints (scaled byσ):

Projection dual : min
λ≥0

log

(

∑
Y

pθ(Y|X)exp(−λ ·φ(X,Y))

)

s. t. ∑
i

λcpi≤ σ,

whereφ is the vector of feature valuesφcpi for assignmentY of parse trees to the entire corpusX, and
λ is the vector of dual parametersλcpi. The optimal primal solution is related to the dual solution
by the equationq(Y) ∝ pθ(Y|X)exp(−λ ·φ(X,Y)). We solve the dual via projected gradient, as
described by Bertsekas (1995). Note that projection onto the simplex constraints can be done very
efficiently as described in Bertsekas (1995).

Whenσ is zero, the projection is an identity mapping and the algorithm reduces to EM. For
intermediate values ofσ, the constraints work to decrease the confidence of the highest probability
parent tags for each child instance. For parent tags that are supported by many high-probability
instances, this pressure is distributed among many instances and has little effect. For parent tags
that are supported by few high-probability instances however, the probability of these instances is
more severely reduced, which can (after several iterations of the algorithm) effectively eliminate
that parent tag as a possibility for the given child tag.

4.4 Optimization Algorithms

The optimization algorithm for the PR objective uses a minorization-maximization procedure akin
to EM. Recall that we defined the PR objective (Equation 6) as:

J(θ) = L(θ)−min
q

[

KL (q(Y) ‖ pθ(Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]
∣

∣

∣

∣

β

]

.

If we further define:

F ′(q,θ) = L(θ)−
[

KL (q(Y) ‖ pθ(Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]
∣

∣

∣

∣

β

]

,

then we can express the PR objective in a form very similar to that of the previously introduced
lower bound on EM (Equation 1):

J(θ) = max
q

F ′(q,θ).

This objective can then be optimized by modifying the E-step of EM to include theβ-norm penalty:

E′ : qt+1 = argmax
q

F ′(q,θt) = argmin
q

KL (q(Y) ‖ pθt (Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]
∣

∣

∣

∣

β . (8)

The projected posteriorsqt+1(Y) are then used to compute sufficient statistics and update the
model’s parameters in the M-step, which remains unchanged, as in Equation 2. This scheme is
illustrated in Figure 5. The following proposition is adapted from Ganchev etal. (2010), who pro-
vide a version for hard constraints.
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Figure 5: Modified EM for maximizing the PR objectiveJ(θ) via block-coordinate ascent on lower-
boundF ′(q,θ). E′-step minimizesKL (q(Y)||pθ(Y|X))+σ
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Proposition 4.1 For the modified EM algorithm illustrated in Figure 5, which iterates theE′-step
(Equation 8) with the normalM -step (Equation 2), monotonically increases the PR objective:
J(θt+1)≥ J(θt).

Proof The proof is analogous to the proof of monotonic increase of the standardEM objective.
Essentially:

J(θt+1) = F ′(qt+2,θt+1)≥ F ′(qt+1,θt+1)≥ F ′(qt+1,θt) = J(θt).

The E′-step setsqt+1 = argmaxqF ′(q,θt), henceJ(θt) = F ′(qt+1,θt). The M-step setsθt+1 =

argmaxθ F ′(qt+1,θ), henceF ′(qt+1,θt+1) ≥ F ′(qt+1,θt). Finally, J(θt+1) = maxqF ′(q,θt+1) ≥
F ′(qt+1,θt+1).

As for standard EM, to prove that coordinate ascent onF ′(q,θ) converges to stationary points
of J(θ), we need to make additional assumptions on the regularity of the likelihood function and
boundedness of the parameter space as in Tseng (2004). This analysiscan be easily extended to our
setting, but is beyond the scope of the current paper.

We note that optimizing the PR objective does take substantially longer than optimizinglikeli-
hood by itself. When optimizing likelihood, we can get the optimal posteriors foran E-step using
just one call to the inside-outside algorithm for each sentence. For PR though, the function we are
optimizing in theE′-step is aKL plus a penalty term, so to find its minimum we have to follow
the negative gradient. Each step along the negative gradient requires acall to the inside-outside
algorithm—several calls if the initial step size we try does not satisfy the Wolfe conditions. Thus, it
might be better to use an optimization schedule whereE′-step would not be fully optimized in ear-
lier iterations, perhaps taking just a single step along the negative gradient.Then, in laterE′-steps,
we could increase the precision of the optimization by taking more gradient descent steps (if they
are required to get close to the minimum). Fortunately, in practice we found that,at least for the
experiments in this paper, the optimization did not take so long that such a schedule was necessary.
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5. Prior Learning Approaches and Model Extensions

We will compare PR to simple EM and to the methods of several previous studies inSection 6.
Before that, we review the theory behind the previous work.

5.1 Bayesian Learning

The main learning method we will compare with experimentally is Bayesian learning with a sparsity-
inducing prior. We will also compare our accuracy to that achieved by several methods that use other
priors. This latter comparison will be less direct though, as these priors tend to encode linguistic
information at a finer-grained level.

Recent advances in Bayesian inference methods have been applied to DMV grammar induction
with varying levels of success. These approaches have focused on injecting linguistic knowledge
into the DMV by using a Dirichlet prior to sparsify parameters (Cohen et al., 2008; Headden III
et al., 2009), or using logistic normal priors to tie parameters (Cohen et al., 2008; Cohen and Smith,
2009). In the following subsections, we will review those methods; experimental comparisons are
given in Section 6.

5.1.1 SPARSITY-INDUCING PRIORS

Dirichlet priors have been often used in DMV learning. More precisely, the prior distribution of the
parameters of the DMV represented as a probabilistic context-free grammar(PCFG) is specified as
a product of Dirichlets:p(θ) = ∏A∈VN

D(θA;αA) where the underlying CFG isG = (VN,VT ,R,S)
with VN, VT , andR a set of non-terminals, terminals, and rules, respectively, andSa start symbol.
(See Smith, 2006 for a detailed encoding of the DMV as a PCFG.) Each Dirichlet in this prior has
the form:

D(θA;αA) =
1
Z ∏

β:A→β∈R

θA(β)αA→β−1,

whereZ is a normalization term and theαs are hyperparameters.
The true posterior over the parameters,p(θ|X) ∝ ∑Y p(Y,X|θ)p(θ), is generally multi-modal

and intractable to compute. The typical variational approximation is to define anapproximate fac-
tored posterior over both parameters and latent variables,q(Y,θ) = q(Y)q(θ), and use mean-field
updates to minimizeKL (q(Y)q(θ)||p(Y,θ|X)) . As shown by Kurihara and Sato (2004), this can
be done efficiently with the product of Dirichlets type of prior. Assuming the hyperparameters of
the prior are fixed, the coordinate descent algorithm for updatingq(Y),q(θ) is similar to EM. In the
E-like-step, inference forY is performed using the approximate mean parametersθ̄ = Eq[θ]. The
M-like-step is a slight modification to the standard EMM-step, both shown below:

EM M -step :θt+1
A (β) ∝ Eqt+1[#A→β(Y)],

Dirichlet M -like-step :θ̄t+1
A (β) ∝ exp(ψ(Eqt+1[#A→β(Y)]+αA→β)),

whereψ is the digamma function. As Figure 6 illustrates, exp(ψ(x)) is upper bounded byy = x.
That is, it slightly discounts the value ofx, though by no more than 0.5, asy= x−0.5 lower bounds
it. Thus, exp(ψ(x+α)) is similar to addingα−0.5 tox. For anyα < 0.5, this encourages parameter
sparsity in theDirichlet M -like-step, since smallθ will get squashed to zero by the digamma.

This Dirichlet prior method is applied in several previous studies. Cohen etal. (2008) use this
method for dependency parsing with the DMV and achieve improvements overbasic EM. They set
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Figure 6: The digamma function.

Step Learning Method Formula

E-like

Standard EM qt+1 = argminqKL (q(Y) ‖ pθt (Y|X))

Dirichlet Prior Same as standard EM, but withθ̄t replacingθt

PR qt+1 = argminqKL (q(Y) ‖ pθt (Y|X)) + σ
∣

∣

∣

∣Eq[φ(X,Y)]
∣

∣

∣

∣

β

M-like

Standard EM θt+1 ∝ Eqt+1 [logpθ(X,Y)]

Dirichlet Prior θ̄t+1 ∝ exp(ψ(Eqt+1 [logpθ(X,Y)]+α))

PR Same as standard EM

Table 1: E-like and M-like steps for the three main learning methods we comparein this work. The
main differences are that PR changes the standard E-step to add a penaltyterm, while a
Dirichlet prior changes the standard M-step to add pseudo-counts.

all hyperparameters to 0.25, resulting in a sparsifying prior (this is the methodreferred to as VB-
Dirichlet in their work). In this paper we will refer to our own implementation of this method as the
“sparsifying Dirichlet prior” (SDP) method. We will show experiments applying it to both the DMV
and the E-DMV. In particular we will show that while it achieves parameter sparsity, this is not the
optimal sparsity to aim for in dependency parsing. Intuitively, sparsity ofpchild(c | p,d) means
requiring that each parent tag has few unique child tags. But as the supervised grid in Figure 2
illustrates, some parents should be allowed many different types of children.For example, VBZ,
VBD, VBP, VB, IN, NN, etc. all should be able to have non-zeropchild(c | p,d) for manyc. We
will show that posterior regularization is one way to achieve a better type of sparsity.

Headden III et al. (2009) also use a Dirichlet prior to train both the DMV and the E-DMV.
However, they set all hyperparameters to 1, so their prior is not aimed at sparsifying. It nevertheless
produces different results than standard EM because it sets parameters according to the mean of the
posteriorq(θ) instead of the mode. We will refer to this (non-sparsifying) Dirichlet prior method as
DP in the remainder of this paper. We have now covered the two learning methods we will directly
compare to, EM and Dirichlet priors, so we summarize their respective E-likeand M-like steps
along with those of PR in Table 1 for ease of comparison.
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5.1.2 PARAMETER-TYING PRIORS

In addition to Dirichlet priors, other types of priors have been used, namely logistic normal priors
(LN) (Cohen et al., 2008) and shared logistic normal priors (SLN) (Cohen and Smith, 2009). While
the SDP aims to induce parameter sparsity, LN and SLN aim to tie parameters together, but all of the
methods have the same goal of favoring more concise grammars. By tying parameters for different
tags, the grammar is not really as ambiguous as the full range of possible parameter settings would
suggest.

The LN prior has the formp(θ) = ∏A∈VN
N (µA,ΣA), whereµA is a mean vector andΣA is a

covariance matrix for a normal distribution over the PCFG rules with lefthand sideA. TheΣA allow
rules with identical lefthand sides to co-vary, effectively tying these parameters. For example, LN
can tie the parameterspchild(c1 | p,d) and pchild(c2 | p,d). The SLN prior extends the capabilities
of the LN prior by allowing any arbitrary parameters to be tied. In this case, parameters such as
pchild(c | p1,d) and pchild(c | p2,d) can be tied even though they correspond to PCGF rules with
different lefthand sides. We compare in the experimental section against some results from using
LN and SLN and show that our posterior regularization method produces higher accuracy results.

5.2 Other Learning Approaches

Several additional training alternatives have been proposed besides Bayesian methods. In particular,
we will briefly describe here four such methods: contrastive estimation (CE), skewed determinis-
tic annealing (SDA), structural annealing (SA), and direct model minimizationthrough an integer
program. We present an empirical comparison to the first three of these methods in Section 6 and
show we can often achieve superior performance with posterior regularization. The fourth method
has not yet been applied to the dependency parsing task we evaluate on inthis work, so we defer
direct comparison.

The first approach, contrastive estimation (CE), has been used to train log-linear models on
unlabeled data (Smith and Eisner, 2005b,a). The basic idea is to maximize the following:

log∏
i

∑y∈Y exp(θ · f (x(i),y))
∑(x,y)∈N(x(i))×Y exp(θ · f (x,y))

, (9)

where f is some vector of feature functions, andN(x(i)) is a set ofx that are in the “neighborhood”
of x(i). The intuition behind this method is that if a person chose to producex(i) out of all the
possiblex in N(x(i)), then we want to learn a model that assigns higher value tox(i) (the numerator
in Equation 9) than to these otherx. Restricting to a neighborhood is necessary for tractability,
and the choice of neighborhood can encode linguistic knowledge. For example, for dependency
parsing Smith and Eisner (2005a) formed neighborhoods by deleting any one word fromx(i), or
transposing any two words.

Two other non-Bayesian approaches of note are skewed deterministic annealing (SDA) and
structural annealing (SA) (Smith and Eisner, 2006). SDA biases towardsshorter dependency links
as in the K&M initializer, and flattens the likelihood function to alleviate the difficulty ofescaping
local maxima. Alternatively, SA biases strongly toward short dependencylinks in early iterations,
then relaxes this constraint over time.

A final related learning approach is that of Ravi et al. (2010). This work attempts to directly
minimize the number of tag bigrams for a supertagging task starting from the ending point of EM,
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then applying first one simple integer program, then a second more complex integer program. This
method is similar to ours in that instead of using a prior, it attempts a direct minimization of tag
pairs. One natural way to adapt it to dependency parsing would be to have an integer program that
minimizes the number of parent-child tag pairs subject to the constraint that every sentence can still
be assigned a complete parse tree. We do not compare to this proposed adaptation directly, but
suspect that it would produce somewhat similar results to our PR method. Onedifference would be
that while PR is very tightly integrated with EM, trading off between EM and the integer program
would not be as straightforward as tuning a single hyperparameter.

5.3 Model Extensions

Before discussing experimental results, we detour to describe the extensions to the basic DMV that
we experimented with. We implemented three model extensions, borrowed fromMcClosky (2008)
and Headden III et al. (2009). The first extension relates to the stop probabilities, and the second
two relate to dependent probabilities. With our experiments on these extendedmodels, we aim to
show that PR also achieves significant gains over other methods in a more complex model space.

5.3.1 EXTENDING STOP PROBABILITIES

The first extension conditions whether to stop generating dependents in a given direction on a larger
set of previous decisions. Specifically, the probability of stopping in a particular direction depends
not only on whether there are any dependents in that direction already, but also on how many. In the
example of Figure 1, this corresponds to changingpstop( f |V, r, f ) to pstop( f |V, r,0) and similarly
for all the other stop probabilities. The 0 in this case indicates thatV has no other right dependents
when it decides whether to continue generating right dependents.

In later sections of this paper, when we talk about a model with maximum stop valency S, this
means we distinguish the cases of 0,1, . . . ,S−2, and≥ S−1 dependents in a given direction. The
basic DMV has maximum stop valency 2 because it distinguishes between having zero dependents
and at least one dependent in a given direction. A model with maximum stop valency of 3 would
distinguish between having 0, 1, or at least 2 dependents in a particular direction. In this case,
when a head generates more dependents in a particular direction after its second dependent, the
stopping distribution it draws from will always be the same—for headp and directiond this will be
pstop(· | p,d,2).

5.3.2 EXTENDING DEPENDENTPROBABILITIES

The second model extension we implement is analogous to the first, but appliesto dependent tag
probabilities instead of stop probabilities. That is, we expand the set of variables the model con-
ditions on when selecting a particular dependent tag. Again, what conditionon is how many other
dependents were already generated in the same direction. For the example inFigure 1, this means
pchild(N |V, r) becomespchild(N |V, r,0) and similarly for all otherpchild. In later sections of this
paper, when we talk about a model with maximum child valencyC, this means we distinguish be-
tween having 0,1, . . . ,C−2, and≥C−1 dependents in a particular direction. The basic DMV has
maximum child valency 1 because it does not make these distinctions.

This extension to the child probabilities dramatically increases model complexity. Specifically,
the number of parameters grows asO(CT2). Thus, the third and final model extension we implement
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is to add a backoff for the child probabilities that does not condition on the identity of the parent
POS (see Equation 10).

With this model extension, the order in which dependents are generated becomes relevant to the
probability of an overall parse tree. We choose to follow the standard inwards generation order. In
cases where the identity of the rightmost and leftmost dependents have a greater influence on the
true stop probability than the inner dependents, this ordering will work to the model’s advantage.
We do not investigate in this work which languages this holds true for, though changing this ordering
might be one additional way to increase parsing accuracy for some languages.

5.3.3 COMPLETE MODEL

Formally, under the extended DMV the probability of a sentence with POS tagsx and dependency
treey is given by:

pθ(x,y) =proot(r(x))×

∏
y∈y

pstop( f alse| yp,yd,yvs)pchild(yc | yp,yd,yvc)×

∏
x∈x

pstop(true | x, le f t,xvl ) pstop(true | x, right,xvr ),

wherer(x) is the root tag of the dependency tree,y is the dependency ofyc on headyp in direction
yd, andyvc, yvs, xvr , andxvl indicate valency. To formally define these last four variables, first letVc

denote the model’s maximum child valency and letVs denote maximum stop valency. Further, let
acpd to be the number ofyp’s dependents that are further in directionyd thanyc, andaxl (axr) be the
total number of dependents of parentx to the left (right). Then we can formally express the valency
variables as:

yvc = min(Vc,acpd), yvs =min(Vs,acpd),

xvl = min(Vs,axl), xvr =min(Vs,axr).

In the third model extension, the backoff for the child probability to a probability not dependent on
parent POS,pchild(yc | yd,yvc), can formally be expressed by:

λpchild(yc | yp,yd,yvc)+(1−λ)pchild(yc | yd,yvc), (10)

for λ ∈ [0,1]. In Headden III et al. (2009)λ is a learned model parameter. In our experiments,
we do not try to tuneλ, but rather fix it at 1/3. This is a crude approximation to the value used
by Headden III et al. (2009). The way Headden III et al. (2009) choose the weighting(1−λ) for
the backoff is through a Dirichlet prior. To capture the intuition that events seen fewer times should
be more strongly smoothed, this prior has hyperparameter valueK for the standard child probability
and value 2K for the backoff probability, whereK is the number of PCFG rules with a particular
nonterminal on the left-hand side. This ensures that the backoff probability is only ignored when
enough examples of the full child probability have been seen. The prior favors the backoff 2 to 1,
which is why in our approximation of this scheme we use weightλ = 1/3.

6. Experiments

In this section we present positive experimental results validating the PR method. In Section 6.2 we
detail experiments with different regularization strengthsσ on English and analyze the correlation
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Bg Cz De Dk En Es Jp Nl Pt Se Si Tr
tags 11 58 51 24 34 17 74 162 19 31 26 28

sentences 5K 24K 13K 2K 5K 0.4K 12K 7K 2K 3K 0.5K 3K
word types 11K 40K 20K 6K 10K 3K 2K 11K 7K 8K 3K 10K
word tokens 27K 139K 77K 11K 37K 2K 43K 43K 14K 23K 3K 18K

Table 2: Training corpus statistics for sentences with lengths≤ 10, after stripping punctuation. Bg
stands for Bulgarian, Cz for Czech, De for German, Dk for Danish, Enfor English, Es for
Spanish, Jp for Japanese, Nl for Dutch, Pt for Portuguese, Se forSwedish, Sl for Slovene,
and Tr for Turkish.

between accuracy and the PR learning curves. The maximum accuracy weachieve is 64.5% using
an E-DMV with PR-S andσ = 160. This is significantly above the best result of the SDP baseline,
which is only 53.6%. In Section 6.3 we present a summary of related work, attempting to categorize
the many dimensions along which researchers have explored modifications tothe most basic EM
DMV setup. While direct comparison of accuracy numbers from all relatedwork is difficult, we
present evidence that combining PR with a few of those modifications (for example random pool
initialization) would result in the best accuracy yet achieved, especially for longer sentences. In Sec-
tion 6.4 we apply PR to 11 additional languages, using English to select the regularization strength.
Our multi-lingual results show that the PR method is indeed very broadly applicable. Averaging
over all languages, there seem to only be minor differences in accuracybetween PR-S and PR-AS,
and both produce approximately equally sparse grammars. Under the DMV,PR-AS beats the SDP
baseline for 10 out of 12 languages, Danish (Dk) and Swedish (Se) being the exceptions.

We conclude this overview of the experiments with two key points that we feel show PR to be a
very useful and robust method for improving unsupervised dependency parsing:

• All except one of the 60 PR settings we try for English result in higher accuracy than thebest
SDP setting.

• In our multi-lingual experiments PR makes an average absolute accuracy gain of 5% over
SDP for the DMV model.

6.1 Corpora

We evaluated our models on 12 languages—the English Penn Treebank (Marcus et al., 1993) and 11
languages from the CoNLL X shared task: Bulgarian [Bg] (Simov et al., 2002), Czech [Cz] (Boho-
movà et al., 2001), German [De] (Brants et al., 2002), Danish [Dk] (Kromann et al., 2003), Spanish
[Es] (Civit and Martí, 2004), Japanese [Jp] (Kawata and Bartels, 2000), Dutch [Nl] (Van der Beek
et al., 2002), Portuguese [Pt] (Afonso et al., 2002), Swedish [Se] (Nilsson and Hall, 2005), Slovene
[Si] (Džeroski et al., 2006), and Turkish [Tr] (Oflazer et al., 2003). For English we trained on sec-
tions 2-21 of the Penn Treebank and tested on section 23. For the other languages, our training
and test sets were exactly those used in CoNLL X shared task. Following Smithand Eisner (2006),
we stripped punctuation from the sentences and kept only those sentences of length≤ 10. Table 2
shows the size of the different training corpora after that filtering.
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6.2 Results on English

We start with a comparison between EM and the two sparsity-inducing methods,PR and the spar-
sifying Dirichlet prior (SDP), on the English corpus. For all models we trainfor 100 iterations.
Following Klein and Manning (2004), we use a “harmonic initializer”, which wewill refer on this
paper as K&M. This initialization uses the posteriors of a “pseudo” E-step asinitial parameters: pos-
terior root probabilities are uniformproot(r(x)) = 1

|x| and head-dependent probabilities are inversely

proportional to the string distance between head and dependent,pchild(yc | yp,yd,yvc) ∝ 1
|yp−yc|

, nor-
malized to form a proper probability distribution. This initialization biases the parameters to prefer
local attachments.

At the end of training, we smooth the resulting models by addinge−10 to each learned parameter,
merely to remove the chance of zero probabilities for unseen events. (We did not bother to tune this
value at all as it makes very little difference for final parses.) We score models by the attachment
accuracy—the fraction of words assigned the correct parent—of theirViterbi (best) parses. We
compare the performance of all training procedures both on the original DMV model as well as on
the extended model E-DMV.

In Graça et al. (2010), the authors found that for PR, projecting at decoding consistently im-
proved results on the task of word alignment. Consequently, they always compute the projected
distributionq and decode usingq rather than the model distribution. In this work, we found that
projecting at decode time produced worse results. Thus, the following results do not use projection
at decode time.

Following Cohen et al. (2008) we search for the best sparsifying parameterα for SDP training.
See Table 5 in Appendix A for more details on the search forα. We find as Cohen et al. (2008)
did that 0.25 is optimal for the DMV. SDP only achieves accuracy 46.4 in this setting, andeven in
its best E-DMV setting (Vs-Vc= 4-4, α = 0.1), it only reaches accuracy 53.6. These values are far
below most of the PR accuracies we will now discuss.

A comparison between EM and PR for both DMV and E-DMV are shown in Table 3. PR always
performs better than EM. We performed a grid search over regularizationstrength (80 to 180 with a
step of 20), for both the PR-S (symmetric constraint) and PR-AS (asymmetric constraint) formula-
tions. A first observation based on Table 3 is that PR-S generally performs better than the PR-AS.
Furthermore, PR-S seems less sensitive to the particular regularization strength. Comparing PR-S
to EM, PR-S is always better, independent of the particularσ, with improvements ranging from 8%
to 16%. The PR-AS constraints are also always better than EM for each model configuration and for
all different parameter configurations. Note that the optimal parameterσ depends on the particular
model configuration (Vs-Vc).

6.2.1 INSTABILITY WITH RESPECT TOσ

We can give a little more insight as to why we see some instability in the results with respect to
the regularization strength. Figure 7 shows the accuracies on the English corpus broken down by
POS tag category. The plot shows that sharp changes in overall accuracy are in fact caused by even
sharper changes in the attachment accuracies of the tag categories. Thisshould not be surprising,
given that whether using EM or PR, the objective has many local maxima with deep valleys between
them. The problem continues to be very underspecified, and without knowing the “true” sparsity
pattern of a language, we can ultimately only achieve limited parsing accuracy.

472



POSTERIORSPARSITY IN UNSUPERVISEDDEPENDENCYPARSING

Model EM PR
DMV

σ 80 100 120 140 160 180
2-1 45.8 PR-S 60.5 60.9 62.0 61.4 61.4 61.6

PR-AS 53.8 54.3 55.3 54.3 54.6 54.6
Vs-Vc E-DMV
2-1 45.1 PR-S 60.7 59.9 61.3 61.6 62.1 60.2

PR-AS 51.6 54.5 55.0 62.4 54.7 54.5
2-2 54.4 PR-S 62.4 57.1 57.8 57.6 57.1 58.8

PR-AS 56.0 56.2 56.6 57.0 57.2 59.0
3-3 55.3 PR-S 59.3 60.8 60.0 62.264.5 64.1

PR-AS 59.3 60.0 60.3 60.7 55.8 57.9
4-4 55.1 PR-S 59.4 61.2 61.6 63.964.3 63.6

PR-AS 59.5 59.5 61.4 57.7 58.2 58.2

Table 3: Directed attachment accuracy results on the test corpus. Bold represents the best parameter
setting for the DMV model and for each of the E-DMV models. The first columncontains
theVs-Vc used. Columns represent differentσ for both constraints PR-S on the left and
PR-AS on the right.
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Figure 7: The accuracy overall and for different POS tag types in the English corpus as a function
of ℓ1/ℓ∞ as we vary the constraint strength. EM hasℓ1/ℓ∞ of 431.17.

6.2.2 LEARNING CURVES

The top half of Figure 8 shows how accuracy and the various objective values change on a held-out
development corpus for the DMV. (In all experiments, we held out the last100 sentences of each
training corpus for development; the numbers in Table 2 correspond to this reduced training set size.
As we will discuss below they were unfortunately not reliable for picking hyperparameters.) First
considering EM, we see that its accuracy is very stable after 20 iterations;its maximum value is at
80 iterations, but this is only marginally different from the value at 20 iterations. Its corresponding
negative dev log likelihoood hits a minimum around 15 iterations, which correlates fairly well with
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accuracy, but then negative dev log likelihood steadily increases after this. So, while dev likelihood
would select a reasonable stopping point in this case, it can hardly be saidto generally correlate well
with accuracy. Next, considering SDP, we see its accuracy is mostly stagnant after 25 iterations, yet
its negative dev log likelihood continues to steadily decrease long past iteration 25. Thus, the value
of the objective on the dev set for SDP does not provide a way to select agood stopping point, nor
does it correlate particularly well with accuracy. Finally, considering PR,we see slightly noisier
accuracy curves that take a little longer to reach their maximums: around iteration 30 for PR-S and
iteration 40 for PR-AS. The PR dev objective value curves matches the behavior of the accuracy
curve fairly well and would select a good iteration for stopping. In summary, for the DMV, dev
likelihood would not be a bad proxy for selecting stopping points for EM andPR.

However, the correlation is not as good when using the extended models, whose learning curves
are shown in the bottom half of Figure 8. For example, both PR-S and PR-ASexperience large
jumps in accuracy that are not reflected in the likelihood curves. Thus, in the remainder of this
work we do not attempt to select a stopping point based on dev likelihood, but rather simply run all
experiments for 100 iterations.

We also tried selecting a stopping point based on constituent contexts, motivated by Reichart
and Rappoport (2009). Our hypothesis was that entropy of the distribution over contexts for each
constituent should be small when parsing accuracy was high. However,comparing entropy of the
gold trees to entropy of the trees produced by EM, this was only true for about half of the languages
we tested on, and not strongly so for most of these. Also we note that we found no correlation
between the PR objective on the development set and the best setting for thePR constraint strength,
which does make it hard to pick this strength parameter in an unsupervised setting.

6.3 Comparison with Previous Work

Most results from previous work are not directly comparable due to differences in initialization,
decoding method, or the incorporation of some degree of supervision. For this reason, we present
the majority of the comparisons in Appendix B, where we also note implementation differences that
we were able to determine. Here, we highlight the most salient accuracy numbers for the methods
we mentioned in Section 5.

The best result reported thus far without additional lexical or multilingual information is that
of Headden III et al. (2009). With a non-sparsifying Dirichlet prior and a learned (as opposed to
constant)λ, they report an accuracy of 65.0(±5.7)% for an an E-DMV of complexityVs = 2,Vc =
2. (The±5.7 is a result of their use of a random pools initialization strategy.) We are able toachieve
64.5% accuracy with PR. We hypothesize that if PR were tested with random pools initialization
and a learnedλ, it would be able to make even further gains in accuracy. As noted in Appendix B,
the learning of the smoothing parameter performed by Headden III et al. (2009) probably increases
accuracy by about 5.5%. Similarly, Table 6 shows that random pools initialization tends to perform
much better than the deterministic K&M initialization we use.

Other learning methods such as those discussed in Section 5 achieve slightly lower accuracies.
We note that it is difficult however to make a complete comparison to them, as they operate only
on the DMV model, not on any extended versions. Further, there are differences in the decoding
method used. For example, the maximum accuracy achieved using shared logistic normal (SLN)
priors with is 61.3% (Cohen and Smith, 2009). This is on the DMV model, where PR’s maximum
accuracy is a comparable 62%. But the SLN work uses MBR decoding andstates its performance
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Figure 8: Directed accuracy and the objective values on held-out development data as a function
of the training iteration for the DMV (top) and E-DMV (bottom) with the best parameter
settings.

is better than that of the Viterbi that we use. So, comparisons should be taken with a grain of salt.
Comparing to contrastive estimation and annealing methods, accuracies are further below those of
PR. With the DMV model and K&M initialization: CE is 48.7%, SDA is 46.7%, and SA is 51.5%.
For a more extensive comparison to experimental results from related work, see Appendix B.

6.4 Results on Other Languages

A grammar induction algorithm is more interesting if it works on a variety of languages. Otherwise,
the algorithm might just encode a lot of language-specific information. In thissection, we compare
several models and learning methods on twelve different languages to testtheir generalization ca-
pabilities. We do not want to assume that a user would have parsed corpora in each language, so
we do not include a supervised search over model parameters for all languages as part of the evalu-
ation process. Consequently, we use the following setup: for each model,basic DMV and the four
E-DMV complexities we experimented with in the previous sections, pick the bestconfiguration
found for English according to its accuracy on the≤ 10 test set, and use it across the other eleven
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Figure 9: Difference in accuracy between the sparsity inducing training methods and EM training
for the DMV model across the 12 languages. Avg: Average improvement over EM. W:
Number of languages better than EM.

languages. This might not select the ideal parameters for any particular language, but provides a
more realistic test setting: a user has available a labeled corpus in one language, and would like to
induce grammars for other languages of interest.

For the PR approach, since the ideal strength is related to corpus size, wetry two different
approaches. The first is to use exactly the same strength with other languages as used for En-
glish. The second approach is to scale the strength by the number of tokensin each corpus. In
this case, the strength,σx, for a particular language was found by the following formula:σx =
σen∗ |tokensen|/|tokensx|, whereσen is the best strength for English,|tokensen| is the number of
tokens of the English corpus, and|tokensx| is the number of tokens in languagex. This scaling is an
approximation that attempts to require a similar amount of sparsity for each language.

For a table of exact accuracy numbers, we refer the reader to Table 7 inAppendix C. In this
section we provide some figures illustrating the most salient aspects of the results from this table.
Figure 9 illustrates the differences between the EM training and the different sparsity inducing
training methods for the DMV. The zero line in Figure 9 corresponds to performance equal to
EM. We see that the sparsifying methods tend to improve over EM most of the time.The average
improvements are shown in the key of Figure 9. Figure 10 shows a similar comparison of the PR
methods with respect to a SDP learning baseline. We see in Figure 10 that PR isbetter than SDP for
most languages. Figure 11 compares the differences of each training method against EM training
using the E-DMV model with the best setting found for English. Both PR-S andPR-AS perform
better than EM in most cases. The average improvement is even bigger for PR-S than under the
DMV, but PR-AS does not make such large gains. This is probably due to the selection of a simpler
model for PR-AS (Vs-Vc= 2-1). While this simpler model performed better than the more complex
ones for English, this does not generalize to all languages.

Figure 12 compares the different sparsity approaches. On the left we compare PR-S versus
PR-AS without scaling on the DMV. PR-AS beats PR-S in 6 out of 12 cases and the two methods
tie in one case (Czech). Over all 12 languages, the average difference between PR-AS and PR-S
is only 3.2% on the DMV. We note that the difference is bigger for the E-DMV models, but this
is possibly due to the selection of a simpler model (Vs-Vc = 2-1) for PR-AS. On the right side of
the same figure, we compare PR-AS without scaling versus PR-AS with scaling. The unscaled
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version tends to perform better. In general, scaling that increases the constraint strength seems to
be advantageous, the exception being for Dutch (Nl). Increased strength tends to correlate with
increased runtime though, so there is a tradeoff to be made there.

Figure 13 compares the sparsity achieved by EM, SDP, and the PR methods on the DMV. We
can see that the PR methods indeed achieve much greater sparsity than EM, and that SDP is only
slightly more sparse than EM. If we also compared to supervised model initialization, most of the
PR instances would have greater sparsity than the supervised, and EM and SDP would be much
less sparse than the supervised. So, it seems that over-sparsifying is allowing us to achieve better
accuracy than under-sparsifying. Although also not shown in the plot, we observe similar sparsity
patterns on the test data as well.
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Figure 12: Comparing the different sparsity constraints for the DMV model over twelve different
languages. Left: PR-S vs PR-AS. Right: PR-AS without scaling vs PR-ASwith scaling.

Figure 13: Comparing DMV grammar ambiguities on the training data by computing theaverage
number of parent tags per child tag (ℓ1/ℓ∞ divided by number of child tags) and normal-
izing it by the theoretical maximum for each language. Grammar ambiguities from left
to right within each group of bars are those resulting from: EM, SDP withα = 0.25,
PR-S withσ = 120, and PR-AS withσ = 120. Higher values imply less sparsity.

7. Analysis

Our accuracy numbers validate that PR is useful. In this section we attempt to analyze how and why
it is useful, to validate our original claim that sparsity in parent-child types is the phenomenon we
are capturing.

One common EM error that PR fixes in many languages is the directionality of the noun-
determiner relation. Figure 14 shows an example of a Spanish sentence where PR significantly
outperforms standard EM because of this fixed relation. As is evidenced inthis case, EM frequently
assigns a determiner as the parent of a noun, instead of the reverse. PRtends not to make this er-
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Figure 14: Posterior edge probabilities for an example sentence from the Spanish test corpus.Top
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ror. One explanation for this improvement is that it is a result of the fact thatnouns can sometimes
appear without determiners. For example, consider the sentence “Lleva tiempo entenderlos” (trans-
lation: “It takes time to understand (them)”) with tags “main-verb common-noun main-verb”. In
this situation EM must assign the noun to a parent that is not a determiner. In contrast, when PR
sees that sometimes nouns can appear without determiners but that the opposite situation does not
occur, it shifts the model parameters to make nouns the parent of determiners instead of the reverse,
since then it does not have to pay the cost of assigning a parent with a newtag to cover each noun
that does not come with a determiner.

Table 4 contrasts the most frequent types of errors EM, SDP, and PR make on several test sets
where PR does well. The “acc” column is accuracy and the “errs” column isthe absolute number
of errors of the key type. Accuracy for the key “parent POS truth/guess→ child POS” is computed
as a function of the true relation. So, if the key ispt/pg→ c, then accuracy is:

acc=
# of pt → c in Viterbi parses
# of pt → c in gold parses

.

In the following subsections we provide some analysis of the results from Table 4.

7.1 English Corrections

Considering English first, there are several notable differences between EM and PR errors. Similar
to the example for Spanish, the direction of the noun-determiner relation is corrected by PR. This is
reflected by the VB/DT→ NN key, the NN/VBZ→ DT key, the NN/IN→ DT key, the IN/DT→
NN key, the NN/VBD→ DT key, the NN/VBP→ DT key, and the NN/VB→ DT key, which for
EM and SDP have accuracy 0. PR corrects these errors.

A second correction PR makes is reflected in the VB/TO→ VB key. One explanation for the
reason PR is able to correctly identify VBs as the parents of other VBs instead of mistakenly making
TO the parent of VBs is that “VB CC VB” is a frequently occurring sequence. For example, “build
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EM SDP PR
key acc errs key acc errs key acc errs

es

sp/d→ nc 0.0 7 sp/d→ nc 0.0 7 vm/<root>→ vm 0.0 5
nc/sp→ d 0.0 6 nc/sp→ d 0.0 6 <root>/vm→ vm 0.0 4
vm/d→ nc 0.0 5 vm/<root>→ vm 0.0 6 <root>/vm→ vs 0.0 3
vs/d→ nc 0.0 4 nc/vm→ d 0.0 6 rg/vm→ rg 0.0 2

vm/<root>→ vm 0.0 4 vm/d→ nc 0.0 5 aq/aq→ cc 0.0 2
nc/vm→ d 0.0 4 <root>/vm→ vm 0.0 4 nc/cc→ aq 0.0 2

aq/<root>→ cc 0.0 3 vs/d→ nc 0.0 4 vs/<root>→ vm 0.0 2
<root>/vm→ vm 0.0 3 vm/p→ rn 0.0 3 aq/nc→ aq 0.0 2

vm/p→ rn 0.0 3 nc/vs→ d 0.0 3 vm/vm→ sp 75.0 2
nc/vs→ d 0.0 3 nc/<root>→ d 0.0 3 vs/vm→ cs 0.0 2

vm/nc→ sp 0.0 3 vm/nc→ sp 0.0 3 vm/nc→ sp 0.0 2
vm/cs→ vs 0.0 2 <root>/rg→ vm 0.0 2 aq/cc→ aq 0.0 1
vm/d→ p 0.0 2 nc/p→ d 0.0 2 nc/vs→ aq 0.0 1
nc/aq→ d 0.0 2 <root>/d→ nc 0.0 2 <root>/aq→ nc 0.0 1

<root>/vm→ vs 0.0 2 aq/cc→ aq 0.0 2 vm/vm→ cc 50.0 1

bg

<root>/R→ V 0.0 65 N/V→ R 0.0 53 N/V→ R 0.0 56
N/<root>→ R 0.0 37 V/R→ N 0.0 47 V/R→ N 0.0 46
V/<root>→ R 0.0 29 <root>/C→ V 0.0 26 T/V→ V 0.0 26

V/R→ R 0.0 24 V/R→ R 0.0 25 V/R→ R 0.0 25
N/M → N 0.0 20 T/V→ V 0.0 23 V/V→ T 42.4 19
V/V → T 40.6 19 N/M→ N 0.0 20 N/N→ N 73.4 17

<root>/C→ V 0.0 18 V/V→ T 42.4 19 V/V→ N 84.8 14
V/<root>→ C 0.0 17 V/<root>→ C 0.0 17 V/V→ C 30.0 14

T/V → N 0.0 17 N/<root>→ C 0.0 15 T/V→ N 0.0 13
N/<root>→ C 0.0 16 R/N→ N 0.0 14 <root>/V → T 0.0 11

V/R→ N 0.0 16 T/V→ N 0.0 13 N/V→ V 0.0 10
<root>/T→ V 0.0 15 V/N→ N 0.0 11 T/V→ P 0.0 10

N/V → R 0.0 15 N/R→ N 0.0 10 N/N→ M 66.7 10
T/<root>→ V 0.0 12 V/V→ N 87.3 10 V/N→ N 0.0 10

R/N→ N 0.0 12 N/V→ V 0.0 10 <root>/V → V 0.0 9

pt

n/prp→ art 0.0 39 n/prp→ art 0.0 37 prp/v-fin→ n 0.0 32
v/art→ n 0.0 31 v/art→ n 0.0 32 n/prp→ art 0.0 27

prp/art→ n 0.0 24 prp/art→ n 0.0 27 v/n→ prp 0.0 22
n/v-fin→ prp 0.0 18 n/v-fin→ art 0.0 21 n/n→ prp 0.0 20
n/v-fin→ art 0.0 17 v/v-fin→ prp 72.5 11 v/prp→ n 0.0 18

v/pron-det→ n 0.0 12 n/v-fin→ prp 0.0 10 prp/v-fin→ prop 0.0 11
v/v-fin→ prp 69.4 11 prop/prp→ art 0.0 8 prp/prp→ n 0.0 11

v/prp→ v 0.0 11 v/v-fin→ adv 68.0 8 v/v-fin→ adv 64.0 9
prp/pron-det→ n 0.0 10 prp/art→ prop 0.0 7 prop/prp→ art 0.0 8

v/prp→ prp 0.0 9 v/prp→ v 0.0 7 v/v-fin→ n 81.0 8
prop/prp→ art 0.0 8 v/prp→ n 0.0 7 v/prop→ prp 0.0 8
n/v-fin→ pron 0.0 8 <root>/conj-c→ v 0.0 5 n/prop→ prp 0.0 8
n/prp→ pron 0.0 8 v/<root>→ v 0.0 5 v/v-fin→ prp 58.8 7

n/<root>→ prp 0.0 8 v/art→ prop 0.0 5 v/prp→ v 0.0 7
prp/art→ prop 0.0 7 n/<root>→ prp 0.0 5 <root>/prp→ n 0.0 6

en

VB/DT → NN 0.0 129 VB/DT→ NN 0.0 133 NN/NNP→ NN 54.2 76
NN/NNP→ NN 60.1 65 NN/NNP→ NN 54.7 78 IN/NN→ NN 0.0 37
NN/VBZ → DT 0.0 52 NN/IN→ DT 0.0 56 MD/<root>→ VB 0.0 25
NN/IN → DT 0.0 47 NN/VBZ→ DT 0.0 52 <root>/VB → MD 0.0 25
IN/DT → NN 0.0 46 IN/DT→ NN 0.0 46 IN/NNS→ NN 0.0 24

NN/VBD → DT 0.0 41 NN/VBD→ DT 0.0 35 VB/NN→ IN 0.0 21
VB/TO→ VB 0.0 19 VB/TO→ VB 0.0 19 NN/NN→ DT 86.5 21

NN/VBP→ DT 0.0 19 NN/VBP→ DT 0.0 18 VB/DT→ IN 0.0 20
<root>/CD→ NN 0.0 14 NN/NN→ JJ 78.9 16 IN/VBD→ NN 0.0 18

NN/NN→ JJ 81.1 14 VB/IN→ JJ 0.0 12 NN/NN→ JJ 79.2 16
NN/VB → DT 0.0 14 VB/PRP$→ NN 0.0 12 IN/VBZ→ NN 0.0 15
NN/CD→ CD 0.0 13 <root>/CD→ NN 0.0 12 IN/VBP→ NN 0.0 13

VB/PRP$→ NN 0.0 12 NN/VB→ DT 0.0 12 VB/VB→ RB 18.8 13
VB/DT → RB 0.0 11 NN/<root>→ CD 0.0 11 NN/<root>→ NN 0.0 11

VB/<root>→ VB 0.0 10 VB/NNS→ RB 0.0 11 VB/NNS→ NN 0.0 11

Table 4: Top 15 mistakes by parent POS truth/guess→ child POS for English and the three lan-
guages where PR makes the greatest gains over EM with the E-DMV.
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and hold” and “panic and bail” are two instances of the “VB CC VB” pattern from the test corpus.
Presented with such scenarios, where there is no TO present to be the parent of VB, PR chooses the
first VB as the parent of the second. It maintains this preference for making the first VB a parent of
the second when encountered with “VB TO VB” sequences, such as “used to eliminate”, because it
would have to pay an additional penalty to make TO the parent of the second VB. In this manner,
PR corrects the VB/TO→ VB key error of EM and SDP.

A third correction PR makes is reflected in the<root>/CD→NN key. This correction is similar
to the noun-determiner correction: CD and NN often co-occur, but while CD almost never appears
without NN, NN frequently appears without CD. Thus, if PR chose CD as parent of NN, it would
have to pay an additional penalty to select another parent for NN in sentences where no CDs exist.
Thus, PR is able to recognize that CD is not usually a good parent for NN.Again, EM and SDP
have 0 accuracy for this key.

There are a couple of errors common to EM, SDP, and PR. These correspond to the NN/NN→
JJ key and the NN/NNP→ NN key. These are notoriously difficult relations to get right, especially
for an unlexicalized model that also has no notion of the surface lengths ofrelations. We predict that
combining PR with a model such as the lexicalized DMV of Headden III et al. (2009), or applying
the structural annealing technique of Smith and Eisner (2006), could greatly reduce these types of
errors. These changes could also help reduce some of the other main errors PR makes, such as the
ones corresponding to the keys NN/NN→ DT and VB/VB→ RB.

Even after all these improvements, there would likely persist at least one type of English error
that would be hard to fix: the domination of modals by verbs. By convention, modals dominate
verbs in English dependency parses. This is a relatively arbitrary choice, as there are linguistically
sound arguments to be made for either dominating the other. In fact, in some of the other languages
we work with the annotation convention is the reverse of what it is in English. Thus, for now we
merely note that the keys MD/<root>→ VB and<root>/VB → MD account for a large portion
of the English errors with PR.

7.2 Bulgarian Corrections

Moving beyond English, we consider Bulgarian. We might expect qualitatively different results for
Bulgarian for two reasons. First, the language is not in the same family as English. Second, the
Bulgarian corpus employs far fewer POS tags.

One large correction PR makes with respect to EM and SDP corresponds to the key N/M→ N.
The tag M stands for “numeral” in the Bulgarian corpus, so this correction is similar to the English
correction involving the tag CD. Another substantial correction PR makes withrespect to EM and
SDP corresponds to the key<root>/C→ V. The tag C stands for “conjunction” in the Bulgarian
corpus, so this correction means the model is realizing verbs should usuallybe sentence roots rather
than children of conjunctions. Following the same reasoning about PR that we used before, we note
that sentences with verbs but no conjunctions are very common, so if PR chose C as the parent of
V, it would have to pay a penalty to give V a different parent in such sentences. The same reasoning
explains why PR doesn’t see the V/<root>→ C errors or the N/<root>→ C errors that EM and
SDP do.

Although PR is able to make great improvements for Bulgarian parsing, it is clearly crippled
by the small number of POS tags. EM, SDP, and PR all make substantial errors in deciding which
verb to use as the parent of a particle (see key V/V→ T), and many of the main remaining errors
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for PR are caused by similar symmetries (see keys N/N→ N, V/V → N, V/V → C, N/N→ M,
and<root>/V → V). As mentioned in the analysis of English, lexicalization or incorporation of a
notion of surface length of relations might help alleviate these problems.

Corrections PR makes in the other languages can be analyzed using the sametype of reasoning
as we have applied to analysis of English and Bulgarian. We thus leave more extensive interpretation
of Table 4 to the reader.

8. Conclusion

In this paper we presented a new method for unsupervised learning of dependency parsers. In con-
trast with previous approaches that impose a sparsity bias on the model parameters using sparsifying
Dirichlet distributions, we impose a sparsity bias on the model posteriors. We do so by using the
posterior regularization (PR) framework (Graça et al., 2007) with constraints that favor posterior
distributions that have a small number of unique parent-child relations. We propose two such con-
straints: a symmetric constraint similar in spirit to the sparsity constraint applied topart-of-speech
(POS) induction by Graça et al. (2009), and an asymmetric version of the same constraint that more
directly tries to minimize the number of different parent-child types instead of different parent-child
occurrences. On English our approach consistently outperforms the standard EM algorithm and the
approach of training in a Bayesian setting where a sparsifying Dirichlet prior is used. Moreover, we
perform an extensive comparison with previous published work and show that our learning approach
achieves state-of-the-art results. We compare our approach on 11 additional languages, which as far
as we know is the most extensive comparison made for a dependency parser. We report significant
improvements over the competing learning approaches. The new approachimproves over EM by
an average of 6.5% and beats EM by at least 1% on 9 out of 12 languages. It also improves over
the Bayesian learning approach by an average of 5% with gains of more than 1% for for 9 out of 12
languages.

One significant problem we encountered was picking the different parameters for the model in
an unsupervised way, for which we found no good principled solution that worked for all languages.
The PR objective on held-out development sets does not seem to be a reliable proxy for the model
quality. Similarly, additional unsupervised measures for parse quality, motivated by the work of Re-
ichart and Rappoport (2009) on counting constituent contexts, were unreliable. Even in the absence
of a good unsupervised measure of model quality, a better method for transferring the regulariza-
tion strength parameter from one language to another is also needed. The regularization strength
is strongly dependent on the corpus, both on the number of parent-child pairs being constrained
as well as on the number of tokens for each parent and child. Our experiments approximated this
dependence by scaling the best English regularization strength by the number of tokens in other
corpora, but this is not ideal.

With respect to model initialization, the K&M initialization is highly biased to the simple DMV
model, and both RandomP initialization and the initialization approaches proposedby Spitkovsky
et al. (2010) can significantly boost the performance of the model. It would be worth initializing our
models with the techniques proposed by Spitkovsky et al. (2010), since they produce better results,
are deterministic, and reduce the number of parameters that need to be tuned. Following the spirit
of those approaches approaches, we also suggest that some success might be had by initializing the
simple DMV training it, and then using its learned parameters to initialize more complex models
(E-DMV models with larger valence values).
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Regarding the sparsity constraints, we note that the versions we are usingdo not take into
account some possibly important information, such as the directionality of the edge. Moreover,
the same strength is currently used for the root probabilities and for the parent-child probabilities.
Also, we could extend the constraints to work directly on word types rather than on POS tags, since
there is a lot of information lost by discarding the particular words. For instance, Headden III et al.
(2009) achieve significant improvements by conditioning the edge probabilities on the parent word
together with the parent POS. Additionally, we could explore other constraints to encourage locality
by preferring short dependency edges as suggested by the SA workof Smith (2006).

Finally, we would like in the future to move to fully unsupervised learning of grammar. That is,
we would like to use POS tags induced in an unsupervised manner, instead ofassuming gold POS
tags, and see how robust our method is under these conditions. Recent studies show that the quality
of the DMV model degrades significantly when the induced POS tags are used (Headden III et al.,
2008). It would be interesting to see if our model is more robust to the quality of the provided tags.
Further, it would be even more interesting to see how our method performs if we applied it to aid in
the more complex task of joint induction of POS tags and dependency parses.
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Appendix A. Choosing the SDP Hyperparameter

We tried four different values forα: {0.01,0.1,0.25,1}. (Note that the value 1 actually results in a
non-sparsifying prior; this setting is not as good as the sparsifying, as Table 5 shows.)

Table 5 shows the directed accuracy for both the DMV and the E-DMV modelstrained using
EM and SDP. We see in Table 5 that the extended model generally outperforms the DMV, for both
EM and SDP. However, we also see that SDP does not always help: forall valences tried for the
E-DMV except(Vs,Vc) = (2,1), the EM models perform better. This contrasts with the findings
of Headden III et al. (2009), potentially due to the simplified smoothing that weimplemented, and
a difference in the stopping criterion—we ran our model for 100 iterations,while Headden III et al.
(2009) ran until likelihood on a held-out development set converged. Comparing the performance
of the training methods, we see that for the DMV model, SDP training performs better and the best
hyperparameter setting is 0.25 which is the same best parameter found by Cohen et al. (2008). The
performance of our implementation of the SDP is slightly lower than the one reported in that paper,
probably due to different stopping criteria during training.

Appendix B. Extended Comparison to Related Results

In this appendix we present a more extensive comparison between the performances of different
models described in the literature for unsupervised dependency parsing. Table 6 presents the ac-
curacy values reported in various previous papers and the values forapproaches tried in this paper.
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SDPα =

EM 1 0.25 0.1 0.01
DMV 45.8 42.2 46.4 45.2 45.4
2-1 45.1 42.0 46.0 45.9 44.9
2-2 54.4 42.0 43.3 52.5 51.5
3-3 55.3 42.8 47.1 53.5 52.1
4-4 55.1 42.9 47.1 53.6 51.7

Table 5: Directed attachment accuracy results on the test corpus (for sentences of lengths≤ 10,
no punctuation). The second column gives EM results, and the other columns are SDP
results for different settings of the hyperparameterα. The second row is for the basic
DMV model, and the other rows are E-DMV models represented by their valencies (Vs-
Vc). Note that the 2-1 model is just the DMV plus smoothing of the child probabilities
with λ = 0.33. Bold represents the best parameter setting both for the DMV model and
the E-DMV model.

We would like to stress that the setup is not identical for all experiments. For instance, normally the
stopping criteria for training is different. While we train all our models for 100iterations, most other
works use some kind of convergence criteria to stop training. Moreover,there are likely differences
regarding other implementation details. The point of this section is mostly to highlightthe many
different variations of the DMV training and modeling that have been tried in the past. Table 6 is
meant as a resource for comparing some of the best accuracies that these methods have achieved. It
is hard to draw any sweeping conclusions from these numbers, but we hope that this summary of re-
lated work helps future work by suggesting reasonable choices for initialization, model complexity,
smoothing, and other modeling decisions.

We start by comparing the effects of different initialization procedures. (See entries 1-6 in
Table 6.) Although orthogonal to the learning procedure used, these differences are significant to
keep in mind when comparing to previous work. We compare the results on the DMV. First we
compare to work by Headden III et al. (2009) using random pools initialization. A random pool
consists of a set ofB randomly initialized models trained for a small number of iterations. From
theseB models, the one that assigns highest likelihood to held-out development datais picked and
trained until convergence.M such pools are used to createM final models, whose mean accuracy
and standard deviation are reported. We will refer to this initialization method asRandomP; it
performs significantly better than K&M.

The other initializations compared in Table 6 are from recent work by Spitkovsky et al. (2010).
These initialization methods aim to gradually increase the complexity of a model, as measured by
the size of the search space, which for the DMV model is exponential in sentence length. The Baby
Steps (BS) method starts by training the model on sentences of length 1, then the parameters of this
model are used to initialize a training run over sentences of length 2, and so on. The second method,
Less is More (LsM), uses information from the BS method to pick a sentence length that includes
enough sentences to train a model with good predictive power, but leavesout longer sentences that
do not add much information. A hybrid method Leapfrog (LP) combines the models from the two
previous approaches. All of these methods also seem to improve over the K&M initialization.
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We note that there are some differences in the setup of the various initializationexperiments:
the model initialized with RandomP described in Headden III et al. (2009) is trained using a Dirich-
let prior with a hyperparameter of 1 (non-sparsifying DP), while all the other models are trained
using EM. Additionally, the models from Spitkovsky et al. (2010) use a larger amount of data.
Nonetheless, it seems likely that if we combined some of these initializations with outPR method,
we would see even better performance than with the K&M setup that we use forsimplicity in our
current experiments.

The next comparison we make is between the smoothing approach describedin Headden III
et al. (2009) and the simpler implementation done in this work. Again, although thetraining meth-
ods and the initialization differs we see that the smoothing performed by Headden III et al. (2009)
probably increases the accuracy of that model by around 5.5% over our implementation of smooth-
ing (compare entry 2 to entry 7 and entry 1 to entry 8).

Entries 9 to 20 compare different training approaches for the basic DMV.Entry 9 corresponds
to training the model with SDP with the best hyperparameter setting. Entries 10 and 11 correspond
to training with PR under the two types of sparsity constraints. Entries 12 and 13 use the logistic
normal prior (Cohen et al., 2008) and we report the results from the paper using Viterbi decoding.
Entries 14, 15, 16, and 17 correspond to the different shared logistic normal priors (Cohen and
Smith, 2009). These values are for MBR decoding since the authors do not report values for Viterbi
decoding. This gives some advantage to these entries, since according tothe authors MBR decoding
always outperforms Viterbi decoding. Finally, entries 18, 19, and 20 represent the best value for the
three learning approaches contrastive estimation (CE), skewed deterministic annealing (SDA), and
structural annealing (SA) proposed by Smith (2006). For these entries we report the best values
found using supervised selection of training parameters (several values were tried, and the one that
produced the highest accuracy on the test data was selected). Out of all of these methods, the models
trained using PR with the sparsity inducing constraints achieve the best results, the symmetric prior
being the best. The results are similar to the best shared logistic normal prior when tested on
sentences of length up to ten, but when tested on longer sentences the PR trained models perform
significantly better then all other approaches.

The last block of results, entries 21 to 27, shows how a variety of learningmethods compare on
E-DMVs. Entries 21 to 24 compare our implementation of the three different learning approaches,
EM, SDP, and PR with both types of constraints. Model selection in these cases is supervised,
based on accuracy for the≤ 10 test data. PR significantly outperforms the other two approaches.
In particular the PR-S constraints perform the best with an average of 10% improvement over EM
and SDP on sentences of lengths≤ 10, and an even bigger improvement for longer sentences. In
entries 25 to 27 we also compare with the original extended model of McClosky(2008) and with
the smoothed extended model proposed by Headden III et al. (2009). The best model is the E-
DMV with smoothing on the child probability as described by Headden III et al.(2009). It beats
the E-DMV trained with PR-S by a small amount. This difference is much smaller thanthe gains
from using the random initialization and the better smoothing distribution. Thus, webelieve that
training the same model with random initialization, better child probability smoothing, and the PR
constraints would in fact produce the best results. We leave this as futurework.

Finally we would like to note that Table 6 doesn’t report results for the papers that use extra
information. Namely, Headden III et al. (2009) reports the best result published so far, 68.8, for
the test set with sentences of lengths≤ 10, when using lexical information. Also, Cohen and Smith
(2009) reports accuracies of 62.0, 48.0, and 42.2 for sentences of lengths≤ 10, sentences of lengths
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Init Training Model Directed Undirected
≤ 10 ≤ 20 all ≤ 10 ≤ 20 all

Model Initialization
1 K&M EM DMV 45.8 40.2 35.9 63.4 58.0 54.2
2 RandomP DP DMV 55.7 (±8.0)
3 BS Ad-Hoc @15 DMV 55.5 44.3 39.2
4 BS Ad-Hoc @45 DMV 55.1 44.4 39.4
5 LsM Ad-Hoc @15 DMV 56.2 48.2 44.1
6 LP Hybrid @45 DMV 57.1 48.7 45.0

Smoothing effects
7 RandomP DP DMV

(λ learned)
61.2 (±1.2)

8 K&M EM DMV
(λ = 0.33)

45.1 38.7 34.0 62.7 56.9 52.7

DMV
9 K&M SDP 0.25 * DMV 46.4 40.9 36.5 64.0 58.6 54.8
10 K&M PR-S 120 * DMV 62.0 53.8 48.9 69.8 62.4 58.2
11 K&M PR-AS 120 * DMV 55.3 49.4 44.4 67.1 60.7 56.4
12 K&M LN I DMV 56.6 43.3 37.4
13 K&M LN families DMV 59.3 45.1 39.0
14 K&M SLN Tie V DMV 60.2 46.2 40.0
15 K&M SLN Tie N DMV 60.2 46.7 40.9
16 K&M SLN Tie V & N DMV 61.3 47.4 41.4
17 K&M SLN Tie A DMV 59.9 45.8 40.9
18 K&M CE * DMV 48.7 64.9
19 K&M SDA * DMV 46.7 64.3
20 K&M SA * DMV 51.5 67.9

E-DMV
21 K&M EM E-DMV(3,3)

(λ = 0.33) *
55.3 46.4 42.6 69.0 61.9 58.3

22 K&M SDP 0.1 * E-DMV(4,4)
(λ = 0.33) *

53.6 43.8 39.6 67.5 59.0 54.9

23 K&M PR-S 160 * E-DMV(3,3)
(λ = 0.33) *

64.5 54.6 49.5 69.9 60.9 56.0

24 K&M PR-AS 140 * E-DMV(2,1)
(λ = 0.33) *

62.2 53.2 48.5 70.8 61.9 57.8

25 K&M EM E-DMV(2,2) 56.5 69.7
26 RandomP DP E-DMV(2,2) 53.3 (±7.1)
27 RandomP DP E-DMV(2,2)

(λ learned)
65.0 (±5.7)

Table 6: Comparison with previous published results. Results for entries 3,4, 5, and 6 are taken
from Spitkovsky et al. (2010), entries 2, 7, 26, and 27 are taken fromHeadden III et al.
(2009), entry 25 is taken from McClosky (2008), entries 12 and 13 aretaken from Co-
hen et al. (2008), entries 14, 15, 16, and 17 are taken from Cohen and Smith (2009) and
entries 18, 19, and 20 are taken from Smith (2006). A star (*) in the trainingcolumn in-
dicates supervised selection of training parameters (PR regularization strength, SDP prior
hyperparameter, etc.); a star in the model column indicates supervised selection of model
complexity.
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Bg Cz De Dk En Es Jp Nl Pt Se Si Tr Avg
DMV Model

EM 37.8 29.6 35.747.2 45.8 40.3 52.8 37.1 35.7 39.4 42.3 46.8 40.9
SDP 0.25 39.3 30.0 38.6 43.1 46.4 47.5 57.8 35.1 38.7 40.2 48.843.8 42.4
PR-S 120 53.3 31.1 39.4 40.562.0 63.8 63.6 30.7 46.8 41.7 39.1 51.6 47.0
PR-AS 120 51.2 31.1 39.9 42.4 55.3 60.2 61.837.5 47.5 39.4 48.9 53.5 47.4
PR-S s120 51.2 32.8 40.0 38.162.0 65.2 61.5 30.9 42.9 41.5 42.6 50.4 46.6
PR-AS s120 51.133.5 40.4 42.8 55.3 65.2 61.4 30.2 42.5 37.8 45.0 50.2 46.3

Extended Model
EM-(3,3) 41.7 48.9 40.146.4 55.3 44.3 48.547.5 35.9 48.6 47.5 46.2 45.9
SDP-(4,4) 0.1 47.6 48.5 42.0 44.4 53.6 48.9 57.6 45.2 48.3 47.6 35.6 48.9 47.4
PR-S-(3,3) 160 58.3 53.2 46.7 45.9 64.5 57.9 57.7 33.554.0 45.0 50.9 56.4 52.0
PR-AS-(2,1) 140 53.2 32.3 39.9 42.4 61.2 61.5 59.6 30.7 47.8 41.1 50.4 54.2 47.9
PR-S-(3,3) s160 54.155.5 46.0 43.0 64.5 69.7 59.2 33.1 47.0 44.4 48.2 56.1 51.7
PR-AS-(2,1) s140 51.0 33.0 40.5 43.8 61.2 66.159.7 29.9 42.4 37.7 47.0 51.8 47.0

Scaled Strengths
Englishσ = 120 88 451 249 35 120 8 140 138 47 75 10 57 118
Englishσ = 140 103 526 290 41 140 9 163 161 55 88 11 67 138
Englishσ = 160 118 602 332 47 160 11 187 185 62 100 13 76 158

Table 7: Attachment accuracy results. For each method we tested both the basic DMV and the E-
DMV. The parameters used where the best parameters found for English. For the extended
model the child-valency and stop-valency used are indicated in parentheses.EM : The EM
algorithm.SDP: Sparsifying Dirichlet prior.PR-S: Our method using the symmetric ver-
sion of the constraints with strength parameterσ. PR-S-s: The same method but strength
parameter scaled proportional to the number of tokens in the train set for each language.
PR-AS / PR-AS-s: Our method with the asymmetric constraints, without and with scaling
of the strength parameter.σ: The scaled weights for each corpus for the different values of
the strength parameter used for English. Bold indicates the best method for each learning
and model type.

≤ 20, and all sentences, respectively, when using multilingual information. This result for sentences
of length≤ 10 is equal to our best result, but is inferior to our results on longer sentences. Thus, we
think that PR is a very promising technique for use with other data sets, wherelonger sentences are
common.

Appendix C. Multilingual Results in Table Form

Table 7 shows the performance for all models and training procedures for the 12 different languages.
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