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Abstract
We present Posterior Regularization, a probabilistic framework for structured, weakly supervised
learning. Our framework efficiently incorporates indirect supervision via constraints on posterior
distributions of probabilistic models with latent variables. Posterior Regularization separates model
complexity from the complexity of structural constraints it is desired to satisfy. By directly impos-
ing decomposable regularization on the posterior moments of latent variables during learning, we
retain the computational efficiency of the unconstrained model while ensuring desired constraints
hold in expectation. We present an efficient algorithm for learning with posterior regularization and
illustrate its versatility on a diverse set of structural constraints such as bijectivity, symmetry and
group sparsity in several large scale experiments, including multi-view learning, cross-lingual de-
pendency grammar induction, unsupervised part-of-speech induction, and bitext word alignment. 1

1. Introduction

In unsupervised problems where data has sequential, recursive, spatial, relational, and other kinds
of structure, we often employ structured statistical models with latent variables to tease apart the
underlying dependencies and induce meaningful semantic categories. Unsupervised part-of-speech
and grammar induction, word and phrase alignment for statistical machine translation in natural lan-
guage processing are examples of such aims. Generative models (probabilistic grammars, graphical
models, etc.) are usually estimated by maximizing the expected likelihood of the observed data
by marginalizing over the hidden variables, typically via the Expectation Maximization (EM) al-
gorithm. Because of computational and statistical concerns, generative models used in practice are
very simplistic models of the underlying phenomena; for example, the syntactic structure of lan-
guage or the language translation process. A pernicious problem with such models is that marginal
likelihood may not guide the model towards the intended role for the latent variables, instead focus-
ing on explaining irrelevant but common correlations in the data. Since we are mostly interested in
the distribution of the latent variables in the hope that they capture intended regularities without di-
rect supervision, controlling this latent distribution is critical. Very indirect methods such as clever
initialization, ad hoc procedural modifications, and complex data transformations are often used to
affect the posteriors of latent variables in a desired manner.

A key challenge for structured, weakly supervised learning is developing a flexible, declarative
framework for expressing structural constraints on latent variables arising from prior knowledge
and indirect supervision. Structured models have the ability to capture a very rich array of possible

1. A preliminary version of the PR framework appeared in Graça et al. (2007). Various extensions and applications
appeared in Ganchev et al. (2008a,b, 2009); Graça et al. (2009a). Our work applying PR to the bitext word alignment
problem is currently under review for publication in the Journal of Computational Linguistics.
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relationships, but adding complexity to the model often leads to intractable inference. In this article,
we present the Posterior Regularization (PR) framework (Graça et al., 2007), which separates model
complexity from the complexity of structural constraints it is desired to satisfy. Unlike parametric
regularization in a Bayesian framework, our approach incorporates data-dependent constraints that
are easy to encode as information about model posteriors on the observed data, but may be difficult
to encode directly as information about model parameters. In Sections 5-8 we describe a variety of
such useful prior knowledge constraints in several application domains.

The contributions of this paper are:

• A flexible, declarative framework for structured, weakly supervised learning via posterior
regularization.

• An efficient algorithm for model estimation with posterior regularization.

• An extensive evaluation of different types of constraints in several domains: multi-view learn-
ing, cross-lingual dependency grammar induction, unsupervised part-of-speech induction,
and bitext word alignment.

• A detailed explanation of the connections between several other recent proposals for weak
supervision, including structured constraint-driven learning (Chang et al., 2007), generalized
expectation criteria (Mann and McCallum, 2008, 2007) and Bayesian measurements (Liang
et al., 2009).

The rest of this paper is organized as follows. Section 2 describes the posterior regularization
framework and Section 3 illustrates the range of different types of weak supervision constraints
representable in our framework. Section 4 describes the relationship between posterior regulariza-
tion and other related frameworks. Sections 5-8 describe applications of PR to several problems:
word alignment (§5), multi-view learning (§6), cross-lingual projection (§7) and inducing sparsity
structure (§8). Section 9 concludes the paper and presents areas for future work.

2. Posterior Regularization Framework

In this section we describe the posterior regularization framework, which incorporates side-information
into parameter estimation in the form of linear constraints on posterior expectations. As we will
show, this allows tractable learning and inference even when the constraints would be intractable
to encode directly in the model parameters. By defining a flexible language for specifying diverse
types of problem-specific prior knowledge, we make the framework applicable to a wide variety
of probabilistic models, both generative and discriminative. We will use a problem from natural
language processing as a running example in the exposition:

Running Example The task is part-of-speech (POS) tagging with limited or no training data.
Suppose we know that each sentence should have at least one verb and at least one noun, and
would like our model to capture this constraint on the unlabeled sentences. The model could
be either a first-order hidden Markov model (HMM) or a first-order conditional random field
(CRF).

We describe four other applications with empirical results in Sections 5-8, but it will be easier
to illustrate key concepts using this simple example.
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2.1 Preliminaries and Notation

We assume that there is a natural division of variables into “input” variables x and “target” variables
y for each data instance, where x’s are always observed. We denote the set of all instances of
unlabeled data as X. In case of semi-supervised learning, we have some labeled data as well, and
we will use the notation (XL,YL) to denote all the labeled instances.

The starting point for using the PR framework is a probabilistic model. Let θ be the parameters
of the model. The model can be generative, pθ(x,y), or discriminative, pθ(y|x). In the case of
a log-linear model, we use f(x,y) to denote model features. Finally, we use L(θ) to denote the
parameter-regularized log-likelihood of the data.

Running Example In the POS tagging example from above, we would use x to denote a
sentence (i.e. a sequence of words) and y to denote a possible POS assignment. Using an
HMM, it is defined in the normal way as:

p(x,y|θ) =
|x|∏
i=1

pθ(yi|yi−1) pθ(xi|yi)

with θ representing the multinomial distributions directly, and where pθ(y1|y0) = pθ(y1)
represents a set of initial probabilities. Suppose we have a small labeled corpus and a larger
unlabeled corpus. For a generative model such as an HMM, the log-likelihood (+ log-prior)
is:

L(θ) = log p(XL,YL|θ) + log
∑
Y

p(X,Y|θ) + log p(θ),

where corpus probabilities are products over instances: p(XL,YL|θ) =
∏
p(x,y|θ) and

analogously for X,Y; and where p(θ) is a prior probability on parameters. Alternatively, if
we have a discriminative model such as a CRF, then we model only conditional probabilities:

p(y|x, θ) =
exp(θ · f(x,y))

Zθ(x)
(1)

where Zθ(x) =
∑

y exp(θ · f(x,y)) is a normalization constant and f(x,y) are the model
features. For discriminative models, the likelihood function does not include unlabeled data
since log

∑
Y p(Y|X, θ) = 0:

L(θ) = log p(YL|XL, θ) + log p(θ). (2)

In addition to the model features f that are used to specify log-linear models, in the following
section we will introduce constraint features that are not part of the model but are used to guide
learning. Constraint features will be denoted φ throughout the paper, to distinguish them from
model features f .

2.2 Regularization via posterior constraints

The goal of the posterior regularization framework is to restrict the space of the model posteriors
on unlabeled data as a way to guide the model towards desired behavior. In this section we describe
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Symbol Meaning
x the (observed) input variables for a particular example
y the (hidden) output variables for a particular example

X, Y x and y for an entire corpus
f(x,y) model features: used to specify the model
θ parameters of the model (for log-linear models, weights on model features f )

pθ(y|x) the conditional model with parameters θ, and implicitly features f(x,y)
pθ(x,y) the joint model with parameters θ, and implicitly features f(x,y)
φ(x,y) constraint features: used to encode posterior regularization

b bounds on the desired expected values of constraint features
ξ slack variables used to allow small violations of constraints

Table 1: Summary of notation used.

a version of PR specified with respect to a set of constraints. In this case, posterior information is
specified with setsQ of allowed distributions over the hidden variables y. We will defineQ in terms
of constraint features φ(X,Y) and their expectations.

Running Example Recall that in our running example, we want to bias learning so that
each sentence is labeled to contain at least one verb. To encode this formally, we define a
feature φ(x,y) = “number of verbs in y”, and require that this feature has expectation at
least 1. For consistency with the rest of the exposition and standard optimization literature,
we will use the equivalent φ(x,y) = “negative number of verbs in y” and require this has
expectation at most -1:

Qx = {q(y|x) : Eq[φ(x,y)] ≤ −1}

Note that we enforce the constraint only in expectation, so there might be a labeling with non-
zero probability that does not contain a verb. To actually enforce this constraint in the model
would break the first-order Markov property of the distribution. In order to also require at
least one noun per sentence in expectation, we would add another constraint feature, so that
φ would be a function from x,y pairs to R2.

We defineQ, the set of valid distributions, with respect to the expectations of constraint features,
rather than their probabilities, so that our objective leads to an efficient algorithm. More generally
than in the running example, we will define constraints over an entire corpus:

Constrained Posterior Set : Q = {q(Y) : Eq[φ(X,Y)] ≤ b}. (3)

In words, Q denotes the region where constraint feature expectations are bounded by b. Addi-
tionally, it is often useful to allow small violations whose norm is bounded by ε ≥ 0:

Constrained Set (with slack) : Q = {q(Y) : ∃ξ, Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε}. (4)

Here ξ is a vector of slack variables and ||·||β denotes some norm. Note that the PR method we
describe will only be useful if Q is non-empty:
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Assumption 2.1 Q is non-empty.

We explore several types of constraints in Sections 5-8, including: constraints similar to the
running example, where each hidden state is constrained to appear at most once in expectation;
constraints that bias two models to agree on latent variables in expectation; constraints that enforce
a particular group-sparsity of the posterior moments. The constraint set defined in Equation 4 is
usually referred to as inequality constraints with slack, since setting ε = 0 enforces inequality
constraints strictly. The derivations for equality constraints are very similar to the derivations for
inequality so we leave them out in the interest of space. Note also that we can encode equality
constraints by adding two inequality constraints, although this will leave us with twice as many
variables in the dual. The assumption of linearity of the constraints is computationally important,
as we will show below. For now, we do not make any assumptions about the features φ(x,y),
but if they factor in the same way as the model, then we can use the same inference algorithms in
PR training as we use for the original model (see Proposition 2.2). In PR, the log-likelihood of a
model is penalized with the KL-divergence between the desired distribution spaceQ and the model
posteriors,

KL(Q ‖ pθ(Y|X)) = min
q∈Q

KL(q(Y) ‖ pθ(Y|X)). (5)

The posterior-regularized objective is:

Posterior Regularized Likelihood : JQ(θ) = L(θ)−KL(Q ‖ pθ(Y|X)). (6)

The objective trades off likelihood and distance to the desired posterior subspace (modulo getting
stuck in local maxima) and provides an effective means of controlling the posteriors. In many
cases, prior knowledge is easy to specify in terms of posteriors, and much more difficult to specify
as priors on model parameters or by explicitly adding constraints to the model. A key advantage of
using regularization on posteriors is that the learned model itself remains simple and tractable, while
during learning it is driven to obey the constraints through setting appropriate parameters θ. The
advantage of imposing the constraints via KL-divergence from the posteriors is that the objective
above can be optimized using a simple EM scheme described in 2.6. It is also possible to use a
similar algorithm to maximize L(θ) − αKL(Q ‖ pθ(Y | X)), for α ∈ [0, 1]. See Appendix A for
details.

Running Example In order to represent a corpus-wide constraint set Q for our POS prob-
lem, we stack the constraint features into a function from X,Y pairs (sentences, part-of-
speech sequences) to R2|X|, where |X| is the number of sentences in our unlabeled corpus.
For the POS tagging example, the PR objective penalizes parameters that do not assign each
sentence a verb and a noun in expectation.

For conditional models, the likelihoodL(θ) does not depend on unlabeled data, so in the absence
of both labeled data and a prior on parameters p(θ), the objective is optimized for any pθ(Y | X) ∈
Q. If we employ a parametric prior on θ, then we will prefer parameters that come close to satisfying
the constraints, where proximity is measured by KL-divergence. Note that on unseen unlabeled data,
the learned parameters θ might not satisfy the constraints on posteriors exactly, although typically
they are fairly close if the model has enough capacity.
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2.3 Slack constraints vs. penalty

In order for our objective to be well defined, Q must be non-empty. When there are a large number
of constraints, or when the constraint features φ are defined by some instance-specific process, it
might not be easy to choose constraint values b and slack ε that lead to satisfiable constraints. It
is sometimes easier to penalize slack variables instead of setting a bound ε on their norm. In these
cases, we add a slack penalty to the regularized likelihood objective in Equation 6:

L(θ) − min
q,ξ

KL (q(Y) || pθ(Y|X)) + σ ||ξ||β
s. t. Eq[φ(X,Y)]− b ≤ ξ.

(7)

The slack-constrained and slack-penalized versions of the objectives are equivalent in the sense
that they follow the same regularization path: for every ε there exists some σ that results in identical
parameters θ. Note that while we have used a norm ||·||β to impose a cost on violations of the
constraints, we could have used any arbitrary convex penalty function, for which the minimal q is
easily computable.

2.4 Computing the posterior regularizer

In this subsection, we describe how to compute the objective we have introduced for fixed parame-
ters θ. The regularization term is stated in Equations 6 and 7 in terms of an optimization problem.
We assume that we have algorithms to do inference in the statistical model of interest, pθ. We
describe the computation of the regularization term for the inequality constraints:

min
q,ξ

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε (8)

Proposition 2.1 The regularization problems for PR with inequality constraints in Equation 8 can
be solved efficiently in its dual form. The primal solution q∗ is unique since KL divergence is strictly
convex and is given in terms of the dual solution λ∗ by:

q∗(Y) =
pθ(Y|X) exp{−λ∗ · φ(X,Y)}

Z(λ∗)
(9)

where Z(λ∗) =
∑

Y pθ(Y|X) exp(−λ∗ · φ(X,Y)). Define ||·||β∗ as the dual norm of ||·||β . The
dual of the problem in Equation 8 is

max
λ≥0

−b · λ− logZ(λ) − ε ||λ||β∗ . (10)

The proof is included in Appendix B using standard Lagrangian duality results and strict convexity
of KL (e.g., Bertsekas (1999)). The dual form in Equation 10 are typically computationally more
tractable than the primal form (Equation 8) because there is one dual variable per expectation con-
straint, while there is one primal variable per labeling Y. For structured models, this is typically
intractable. An analogous proposition can be proven for the objective with penalties (Equation 7),
with almost identical proof. We omit this for brevity.
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M− Step :
max
θ
F (q, θ)

E′ − Step :
max
q∈Q

F (q, θ)

θ

q(Y)
Q

pθ(Y|X)

q(Y)

min KL

Figure 1: Modified EM for optimizing PR objective L(θ)−KL(Q ‖ pθ(Y|X)).

2.5 Factored q(Y) for factored constraints

The form of the optimal q with respect to pθ(Y|X) and φ has important computational implications.

Proposition 2.2 If pθ(Y|X) factors as a product of clique potentials over a set of cliques C, and
φ(X,Y) factors as a sum over some subset of those cliques, then the optimizer q∗(Y) of Equation 9
will also factor as a product of potentials of cliques in C.

This is easy to show. Our assumptions are a factorization for pθ:

Factored Posteriors : p(Y | X) =
1

Z(X)

∏
c∈C

ψ(X,Yc) (11)

and the same factorization for φ:

Factored Features : φ(X,Y) =
∑
c∈C

φ(X,Yc) (12)

which imply that q∗(Y) will also factor as a product over the cliques C:

Factored Solution : q∗(Y) =
1

Z(X)Z(λ)

∏
c∈C

ψ(X,Yc) exp{−λ · φ(X,Yc)}

=
1

Z ′(X)

∏
c∈C

ψ′(X,Yc),
(13)

where ψ′(X,Yc) = ψ(X,Yc) exp{−λ · φ(X,Yc)} and Z ′(X) = Z(X)Z(λ).

2.6 Posterior regularization via Expectation Maximization

This section presents an optimization algorithm for the PR objective. The algorithm we present is
a minorization-maximization algorithm akin to EM, and both slack-constrained and slack-penalized
formulations can be optimized using it. To simplify the exposition, we focus first on slack-constrained
version, and leave a treatment of optimization of the slack-penalized version to Section 2.7.
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Recall the standard expectation maximization (EM) algorithm used to optimize marginal like-
lihood L(θ) = log

∑
Y pθ(X,Y). Neal and Hinton (1998) describe an interpretation of the EM

algorithm as block coordinate ascent on function that lower-bounds L(θ), which we also use below.
By Jensen’s inequality, we define a lower-bound F (q, θ) as

L(θ) = log
∑
Y

q(Y)
pθ(X,Y)
q(Y)

≥
∑
Y

q(Y) log
pθ(X,Y)
q(Y)

= F (q, θ). (14)

we can re-write F (q, θ) as

F (q, θ) =
∑
Y

q(Y) log(pθ(X)pθ(Y|X))−
∑
Y

q(Y) log q(Y)

= L(θ)−
∑
Y

q(Y) log
q(Y)

pθ(Y|X)

= L(θ)−KL(q(Y)||pθ(Y|X))

(15)

Using this interpretation, we can view EM as performing coordinate ascent on F (q, θ). Starting
from an initial parameter estimate θ0, the algorithm iterates two block-coordinate ascent steps until
a convergence criterion is reached:

E : qt+1 = arg max
q

F (q, θt) = arg min
q

KL(q(Y) ‖ pθt(Y | X)) (16)

M : θt+1 = arg max
θ

F (qt+1, θ) = arg max
θ

Eqt+1 [log pθ(X,Y)] (17)

It is easy to see that the E-step sets qt+1(Y) = pθt(Y|X).
The PR objective (Equation 6) is

JQ(θ) = max
q∈Q

F (q, θ) = L(θ)− min
q(Y)∈Q

KL(q(Y)||pθ(Y|X)), (18)

where Q = {q(Y) : ∃ξ, Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε}. In order to optimize this objective, it
suffices to modify the E-step to include the constraints:

E′ : qt+1 = arg max
q∈Q

F (q, θt) = arg min
q∈Q

KL(q(Y) ‖ pθt(Y|X)) (19)

The projected posteriors qt+1(Y) are then used to compute sufficient statistics and update the
model’s parameters in the M-step, which remains unchanged, as in Equation 17. This scheme is
illustrated in Figure 1.

Proposition 2.3 For the modified EM algorithm illustrated in Figure 1, which iterates the modi-
fied E-step (Equation 19) with the normal M-step (Equation 17), monotonically increases the PR
objective: JQ(θt+1) ≥ JQ(θt).

Proof: The proof is analogous to the proof of monotonic increase of the standard EM objective.
Essentially,

JQ(θt+1) = F (qt+2, θt+1) ≥ F (qt+1, θt+1) ≥ F (qt+1, θt) = JQ(θt).
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The two inequalities are ensured by the E′-step and M-step. E′-step sets qt+1 = arg maxq∈Q F (q, θt),
hence JQ(θt) = F (qt+1, θt). The M-step sets θt+1 = arg maxθ F (qt+1, θ), hence F (qt+1, θt+1) ≥
F (qt+1, θt). Finally, JQ(θt+1) = maxq∈Q F (q, θt+1) ≥ F (qt+1, θt+1) �

Note that the proposition is only meaningful when Q is non-empty and JQ is well-defined.
As for standard EM, to prove that coordinate ascent on F (q, θ) converges to stationary points of
JQ(θ), we need to make additional assumptions on the regularity of the likelihood function and
boundedness of the parameter space as in Tseng (2004). This analysis can be easily extended to our
setting, but is beyond the scope of the current paper.

We can use the dual formulation of Proposition 2.1 to perform the projection. Proposition 2.2
implies that we can use the same algorithms to perform inference in our projected model q as we
did in our original model pθ. We illustrate this with the running example.

Running Example For the POS tagging example with zero slack, the optimization problem
we need to solve is:

arg min
q

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)] ≤ −1

where 1 is a vector of with 1 in each entry. The dual formulation is given by

arg max
λ≥0

1 · λ− logZ(λ) with q∗(Y) =
pθ(Y|X) exp{−λ∗ · φ(X,Y)}

Z(λ∗)
. (20)

We can solve the dual optimization problem by projected gradient ascent. For concreteness
we focus on the HMM model, the CRF is analogous. In this case, both the HMM model and
the CRF model can be factored as products of sentences, and each sentence as a product of
emission probabilities and transition probabilities.

pθ(y | x) =
∏|x|
i=1 pθ(yi|yi−1)pθ(xi|yi)

pθ(x)
(21)

where pθ(y1|y0) = pθ(y1) are the initial probabilities of our HMM. The constraint features
φ can be represented as a sum over sentences and further as a sum over positions in the
sentence:

φ(x,y) =
|x|∑
i=1

φi(x,yi) =
|x|∑
i=1


(−1, 0)> if yi is a verb in sentence x
(0,−1)> if yi is a noun in sentence x
(0, 0)> otherwise

(22)

combining the factored Equations 21 and 22 with the definition of q(Y) we see that q(Y)
must also factor as a first-order Markov model for each sentence.

q∗(Y) ∝
∏
x∈X

|x|∏
i=1

pθ(yi|yi−1)pθ(xi|yi)e−λ∗·φi(x,yi) (23)

Hence q∗(Y) is just a first-order Markov model for each sentence, and we can compute the
normalizer Z(λ∗) and marginals q(yi) for each example using forward-backward. This al-
lows computation of the dual objective in Equation 20 as well as its gradient efficiently. The

9
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gradient of the dual objective is 1−Eq[φ(X,Y)]. We can use projected gradient (Bertsekas,
1999) to perform the optimization, and the projection can be done sentence-by-sentence al-
lowing for online optimization such as stochastic gradient. Optimization for non-zero slack
case can be done using projected subgradient (since the norm is not smooth).

2.7 Penalized slack via Expectation Maximization

If our objective is specified using slack-penalty such as in Equation 7, then we need a slightly
different E-step. Instead of restricting q ∈ Q, the modified E′-step adds a cost for violating the
constraints

E′ : min
q,ξ

KL (q(Y) || pθ(Y|X)) + σ ||ξ||β
s. t. Eq[φ(X,Y)]− b ≤ ξ

. (24)

An analogous monotonic improvement of modified EM can be shown for the slack-penalized
objective.

2.8 Generative vs. discriminative models

Traditionally, the EM algorithm is applied to learning generative models (the model can condition
on a subset of observed variables, but it must define a distribution over some observed variables).
The reason for this is that EM optimizes marginal log-likelihood (L in our notation) of the observed
data X according to the model. In the case of a discriminative model, pθ(Y|X), we do not model
the distribution of the observed data, and the value of L as a function of θ depends only on the
parametric prior on θ. By contrast, the PR objective uses the KL term and the corresponding con-
straints to bias the model parameters. These constraints depend on the observed data X and if they
are sufficiently rich, they can be used to train a discriminative model. In the extreme case, consider
a constraint set Q that contains only a single distribution q, with q(Y∗) = 1. So, q is concentrated
on a particular labeling Y∗. In this case, the PR objective in Equation 6 reduces to

L(θ) + log(pθ(Y∗|X)) (25)

where the likelihood term L(θ) is simply the prior on model parameters. Thus, if Q is rich enough
to uniquely specify a labeling of the unlabeled data, the PR objective reduces to the supervised
likelihood objective. When Q specifies a range of distributions, such as the one for multi view
learning (Section 6), PR biases the discriminative model to have pθ(Y|X) close to Q.

3. Summary of Applications

Because the PR framework allows very diverse prior information to be specified in a single formal-
ism, the application Sections (§5-§8) are very different in nature. This section attempts to summa-
rize their similarities and differences without getting into the details of the problem applications and
intuition behind the constraints. Table 2 summarizes the applications and constraints described in
the rest of the paper.
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§# Problem Gen/Disc Summary of Structural Constraints
§5 Word Alignment G Translation process is symmetric and bijective
§6 Multi-view learning D Multiple views should agree on label distribution
§7 Dependency Parsing G+D Noisy, partially observed labels encoded in φ and b
§8 Part of speech induction G Sparsity structure independent of model parameters: each

word should be generated by a small number of POS tags

Table 2: Summary of applications of Posterior Regularization described in this paper. Gen/Disc
refers to generative or discriminative models.

In the statistical word alignment application described in Section 5, the goal is to identify pairs or
sets of words that are direct translations of each other. The statistical models used suffer from what
is known as a garbage collector effect: the likelihood function of the simplistic translation models
used prefers to align sections that are not literal translations to rare words, rather than leaving them
unaligned (Moore, 2004). This results in each rare word in a source language being aligned to 4 or 5
words in the target language. To alleviate this problem, we introduce constraint features that count
how many target words are aligned to each source word, and use PR to encourage models where
this number is small in expectation. Modifying the model itself to include such a preference would
break independence and make it intractable.

The multi-view learning application described in Section 6 leverages two or more sources of
input (“views”) along with unlabeled data. The requirement is to train two models, one for each
view, such that they usually agree on the labeling of the unlabeled data. We can do this using PR,
and we recover the Bhattacharyya distance as a regularizer. The PR approach also extends naturally
to structured problems, and cases where we only want partial agreement.

The grammar induction application of Section 7 takes advantage of an existing parser for a
resource-rich language to train a comparable resource for a resource-poor language. Because the
two languages have different syntactic structures, and errors in word alignment abound, using such
out-of-language information requires the ability to train with missing and noisy labeling. This is
achieved using PR constraints that guide learning to prefer models that tend to agree with the noisy
labeling wherever it is provided, while standard regularization guides learning to be self-consistent.

Finally, Section 8 describes an application of PR to ensure a particular sparsity structure, which
can be independent of the structure of the model. Section 8 focuses on the problem of unsuper-
vised part of speech induction, where we are given a sample of text and are required to specify a
syntactic category for each token in the text. A well-known but difficult to capture piece of prior
knowledge for this problem is that each word type should only occur with a small number of syn-
tactic categories, even though there are some syntactic categories that occur with many different
word types. By using an `1/`∞ norm on constraint features we are able to encourage the model to
have precisely this kind of sparsity structure, and greatly increase agreement with human-generated
syntactic categories.

4. Related Frameworks

The work related to learning with constraints on posterior distributions is described in chronological
order in the following three subsections. An overall summary is most easily understood in reverse
chronological order though, so we begin with a few sentences detailing the connections it in that
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order. Liang et al. (2009) describe how we can view constraints on posterior distributions as mea-
surements in a Bayesian setting, and note that inference using such information is intractable. By
approximating this problem, we recover either the generalized expectation constraints framework of
Mann and McCallum (2007), or with a further approximation we recover a special case of the pos-
terior regularization framework presented in Section 2. Finally, a different approximation recovers
the constraint driven learning of Chang et al. (2007). To the best of our knowledge, we are the first
to describe all these connections.

4.1 Constraint Driven Learning

Chang et al. (2007) describe a framework called constraint driven learning (CODL) that can be
viewed as an approximation to optimizing the slack-penalized version of the PR objective (Equa-
tion 7). Chang et al. (2007) are motivated by hard-EM, where the distribution q is approximated by
a single sample at the mode of log pθ(Y|X). Chang et al. (2007) propose to augment log pθ(Y|X)
by adding to it a penalty term based on some domain knowledge. When the penalty terms are well-
behaved, we can view them as adding a cost for violating expectations of constraint features φ. In
such a case, CODL can be viewed as a “hard” approximation to the PR objective:

arg max
θ

L(θ) −min
q∈M

(
KL(q(Y)||pθ(Y|X)) + σ ||Eq[φ(X,Y)]− b||β

)
(26)

where M is the set of distributions concentrated on a single Y. The modified E-Step becomes:

CODL E′-step : max
Y

log pθ(Y|X) − σ ||φ(X,Y)− b||β (27)

Because the constraints used by Chang et al. (2007) do not allow tractable inference, they use
a beam search procedure to optimize the min-KL problem. Additionally they consider a K-best
variant where instead of restricting themselves to a single point estimate for q, they use a uniform
distribution over the top K samples.

4.2 Generalized Expectation Criteria

Generalized expectation criteria (GE) allow a user to specify preferences about model expectations
in the form of linear constraints on some feature expectations (Mann and McCallum, 2007, 2008).
As with PR, a set of constraint features φ are introduced, and a penalty term is added to the log-
likelihood objective. The GE objective is

max
θ
L(θ)− σ ||Epθ [φ(X,Y)]− b||β . (28)

where ||·||β is typically the l2 norm (Druck et al. (2009) use l22) or a distance based on KL diver-
gence (Mann and McCallum, 2008), and the model is a log-linear model such as maximum entropy
or a CRF.

The idea leading to this objective is the following: suppose that we only had enough resources
to make a very small number of measurements when collecting statistics about the true distribution
p∗(y|x). If we try to create a maximum entropy model using these statistics we will end up with
a very impoverished model. It will only use a small number of features and consequently will fail
to generalize to instances where these features cannot occur. In order to train a more feature-rich
model, GE defines a wider set of model features f and uses the small number of estimates based
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on constraint features φ to guide learning. By using l2 regularization on model parameters, we can
ensure that a richer set of model features are used to explain the desired expectations.

Druck et al. (2009) use a gradient ascent method to optimize the objective. Unfortunately,
because the second term in the GE objective (Equation 28) couples the constraint features φ and
the model parameters θ the gradient requires computing the covariance between model features f
and the constraint features φ under pθ. The difficulty in computing the gradient of the GE objective
comes from computing the gradient of the constraint feature expectations. For log-linear models,
this derivative is the covariance of the constraint features with the model features:

∂Epθ [φ(X,Y)]
∂θ

= Epθ [f(X,Y)φ(X,Y)]−Epθ [φ(X,Y)]Epθ [f(X,Y)] (29)

Because of this coupling, the complexity of the dynamic program needed to compute the gradient
is higher than for the model. In the case of graphical models where f and φ have the same Markov
dependencies, computing this gradient usually squares the running time of the dynamic program.
For example, training a first-order linear-chain CRF with dense constraints like bijectivity we use in
section 5 requires time O(L2) rather than O(L) where L is the length of the sequence.

In order to avoid the costly optimization procedure described above, Bellare et al. (2009) pro-
pose a variational approximation. Recall that at a high level, the difficulty in optimizing Equa-
tion 28 is because the last term couples the constraint features φ with the model parameters θ.
In order to separate out these quantities, Bellare et al. (2009) introduce an auxiliary distribution
q(Y) ≈ pθ(Y|X), which is used to approximate the last term in Equation 28. The variational
objective contains three terms instead of two:

arg max
θ

L(θ) −min
q

(
KL(q(Y)||pθ(Y|X)) + σ ||Eq[φ(X,Y)]− b||β

)
. (30)

This formulation is identical to the slack-penalized version of PR, and Bellare et al. (2009) use
the same optimization procedure (described in Section 2). Because both the minorization and the
maximization steps implement minimum Kullback-Leibler projections, Bellare et al. (2009) refer to
this algorithm as alternating projections. Note that in addition to allowing faster batch optimization
than GE, PR can also be trained in an online fashion. In fact, Ganchev et al. (2009) use an online
optimization for this objective to train a dependency parser. These experiments are described in
Section 7.

4.3 Measurements in a Bayesian Framework

Liang et al. (2009) approach the problem of incorporating prior information about model posteri-
ors from a Bayesian point of view. They motivate their approach using the following caricature.
Suppose we have log-linear model pθ(y|x) ∝ exp(f(y,x) · θ). In addition to any labeled data
(XL,YL), we also have performed some additional experiments2. In particular, they have observed
the expected values of some constraint features φ(X,Y) on some unlabeled data X. Because there
is error in measurement, they observe b ≈ φ(X,Y). Figure 2 illustrates this setting. The leftmost
nodes represent (x,y) pairs from the labeled data (XL,YL). The nodes directly to the right of θ
represent unlabeled (x,y) pairs from the unlabeled data X. All the data are tied together by the

2. In their exposition, Liang et al. (2009) incorporate labeled data by including the labels among experiments. We prefer
to separate these types of observations because full label observations do not require approximations.
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XL θ X

YL Y

φ(X,Y)

b

Figure 2: The model used by Liang et al. (2009), using our notation. We have separated treatment
of the labeled data (XL,YL) from treatment of the unlabeled data X.

dependence on the model parameters θ. The constraint features take as input the unlabeled data set
X as well as a full labeling Y, and produce some value φ(X,Y), which is never observed directly.
Instead, we observe some noisy version b ≈ φ(X,Y). The measured values b are distributed
according to some noise model PN (b|φ(X,Y)). Liang et al. (2009) note that the optimization is
convex for log-concave noise and use box noise in their experiments, giving b uniform probability
in some range near φ(X,Y).

In the Bayesian setting, the model parameters θ as well as the observed measurement values b
are random variables. Liang et al. (2009) use the mode of p(θ|XL,YL,X,b) as a point estimate
for θ:

arg max
θ

p(θ|XL,YL,X,b) = arg max
θ

∑
Y

p(θ,Y,b|X,XL,YL) (31)

so Liang et al. (2009) focus on computing p(θ,Y,b|X,XL,YL, φ). They define their model for
this quantity as follows:

p(θ,Y,b|X,XL,YL, φ) = p(θ|XLYL) pθ(Y|X) PN (b|φ(X,Y)) (32)

where the Y and X are particular instantiations of the random variables in the entire unlabeled
corpus X. Equation 32 is a product of three terms: a prior on θ, the model probability pθ(Y|X),
and a noise model PN (b|φ). The noise model is the probability that we observe a value, b, of
the measurement features φ, given that its actual value was φ(X,Y). The idea is that we model
errors in the estimation of the posterior probabilities as noise in the measurement process. Liang
et al. (2009) use a uniform distribution over φ(X,Y) ± ε, which they call “box noise”. Under this
model, observing b farther than ε from φ(X,Y) has zero probability. In log space, the exact MAP
objective, becomes:

max
θ

L(θ) + log Epθ(Y|X)

[
PN (b|φ(X,Y))

]
. (33)

Unfortunately with almost all noise models (including no noise), and box noise in particular, the
second term in Equation 33 makes the optimization problem intractable. 3 Liang et al. (2009)
use a variational approximation as well as a further approximation based on Jensen’s inequality
to reach the PR objective, which they ultimately optimize for their experiments. We also relate

3. For very special noise, such as noise that completely obscures the signal, we can compute the second term in Equa-
tion 33.
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Measurements
Posterior

Regularization
Generalized
Expectation

Constraint
Driven

Learning

variational
approximation;

Jensen’s inequality

variational
approximation

MAP
approximation

MAP
approximation

log E[PN (b|φ)]
≈

log PN (b|E[φ])

Model maxθ L(θ) + . . .

PR minq log PN
(
b|Eq(Y)[φ(X,Y)]

)−KL(q||pθ)
M log Epθ(Y|X) [PN (b|φ(X,Y))]
GE log PN

(
b|Epθ(Y|X)[φ(X,Y)]

)
CODL minY log PN (b|φ(X,Y))−KL(δ(Y)||pθ)

Figure 3: A summary of the different models. We use pθ(Y|X) to denote the model probability,
q(Y) to denote a proposal distribution, and PN for the noise model. The symbol δ(Y)
denotes a distribution concentrated on Y. The approximations are described in the text:
M→GE near Equation 35, GE→PR near Equation 30, PR→CODL at the end of Sec-
tion 4.3.

their framework to GE and CODL. If we approximate the last term in Equation 33 by moving the
expectation inside the probability:

Epθ(Y|X)

[
PN (b | φ(X,Y))

]
≈ PN

(
b | Epθ(Y|X)[φ(X,Y)]

)
, (34)

we end up with an objective equivalent to GE for appropriate noise models. In particular Gaussian
noise corresponds to l22 regularization in GE, since the log of a Gaussian is squared Euclidean
distance (up to scaling). This provides an interpretation of GE as an approximation to the Bayesian
framework proposed by Liang et al. (2009):

max
θ

L(θ) + log PN
(
b Epθ(Y|X)[φ(X,Y)]

)
. (35)

Note that the objective in Equation 35 is a reasonable objective in and of itself, essentially
stating that the measured values b are not dependent on any particular instantiation of the hidden
variables, but rather represent the integral over all their possible assignments. Liang et al. (2009)
also use a variational approximation similar to the one of Bellare et al. (2009) so that the objective
they optimize is exactly the PR objective, although their optimization algorithm is slightly different
from the one presented in Section 2. Finally, if we restrict the set of allowable distributions further
to be concentrated on a single labeling Y, we recover the CODL algorithm. Figure 3 summarizes
the relationships.
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5. Statistical Word Alignments

Word alignments, introduced by Brown et al. (1994) as hidden variables in probabilistic models
for statistical machine translation (IBM models 1-5), describe the correspondence between words
in source and target sentences. We will denote each target sentence as xt = (xt1, . . . , x

t
i, . . . , x

t
I)

and each source sentence as xs = (xs1, . . . , x
s
j , . . . , x

s
J). A word alignment will be represented

as a matrix with entries yij indicating that target word i is a translation of source word j. Al-
though the original IBM models are no longer competitive for machine translation, the resulting
word alignments are still a valuable resource. Word alignments are used primarily for extracting
minimal translation units for machine translation, for example, phrases in phrase-based translation
systems (Koehn et al., 2003) and rules in syntax-based machine translation (Galley et al., 2004;
Chiang et al., 2005), as well as for MT system combination (Matusov et al., 2006). But their im-
portance has grown far beyond machine translation: for instance, transferring annotations between
languages by projecting POS taggers, NP chunkers and parsers through word alignment (Yarowsky
and Ngai, 2001; Rogati et al., 2003; Hwa et al., 2005; Ganchev et al., 2009); discovery of para-
phrases (Bannard and Callison-Burch, 2005; Callison-Burch, 2007, 2008); and joint unsupervised
POS and parser induction across languages (Snyder and Barzilay, 2008; Snyder et al., 2009).

Here we describe two types of prior knowledge that when introduced as constraints in different
word alignment models significantly boost their performance. The two constraints are: (i) bijec-
tivity: “one word should not translate to many words”; and (ii) symmetry: “directional alignments
of one model should agree with those of another model”. A more extensive description of these
constraints applied to the task of word alignments and the quality of the resulting alignments can be
found in Graça et al. (2009b).

5.1 Models

We consider two models below: IBM Model 1 proposed by Brown et al. (1994) and the HMM
model proposed by Vogel et al. (1996). Both models can be expressed as:

p(xt,y | xs) =
∏
j

pd(yj | j, yj−1)pt(xtj | xsyj ), (36)

where y is the alignment and yj is the index of the hidden state (source language index) generating
the target language word at index j. The models differ in their definition of the distortion probability
pd(yj | j, yj−1). Model 1 assumes that the target words are generated independently and assigns
uniform distortion probability. The HMM model assumes that only the distance between the current
and previous source word index is important pd(yj | j, yj−1) = pd(yj | yj − yj−1). Both models
are augmented by adding a special “null” word to the source sentence.

The likelihood of the corpus, marginalized over possible alignments, is concave for Model 1,
but not for the HMM model (Brown et al., 1994; Vogel et al., 1996). For both models though, stan-
dard training using the Expectation Maximization algorithm (Dempster et al., 1977) seeks model
parameters θ that maximize the log-likelihood of the parallel corpus.

On the positive side, both models are simple and complexity of inference is O(I × J) for IBM
Model 1 and O(I × J2) for the HMM. However there are several problems with the models that
arise from their directionality.

• Non-bijective: Multiple target words can align to a single source word with no penalty.
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• Asymmetric: Swapping the source and target languages can produce very different align-
ments, since only constraints and correlations between consecutive positions on one side are
enforced by the models.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
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et que
à le lieu

de provoquer

la rupture

, et que
à le lieu

de provoquer

la rupture

,

Figure 4: Posterior distributions on an English to French sentence using the HMM model. Left:
EN→FR model. Right: FR→ EN model. Top: Regular EM posteriors. Middle: After
applying bijective constraint. Bottom: After applying symmetric constraint. Sure align-
ments are squares with borders; possible alignments are squares without borders. Circle
size indicates probability value. Circle color in the middle and bottom rows indicates dif-
ference in posterior from the top row. Green - higher probability, red - lower probability.

The top row of Figure 4 shows an example of the posterior distribution for the alignment be-
tween an English and a French sentence using the HMM model. The left figure shows the alignment
in the English to French direction where the rows are source words and columns are target words,
while the right figure shows the alignment posteriors of the opposite direction. The first observation
we make is that the posteriors are concentrated around particular source words (rare words occurring
less than 5 times in the corpus) in both directions, instead of being spread across different words.
This is a well known problem when training using EM, called the “garbage collector effect” (Brown
et al., 1993). That is, rare words in the source language end up aligned to too many words in the tar-
get language because the generative model has to distribute translation probability for each source
word among all candidate target words. Since the rare source word occurs in only a few sentences
it needs to spread its probability mass over fewer competing target words. In this case, choosing
to align the rare word to all of these target words leads to higher likelihood than correctly aligning
them or aligning them to the special null word, since it increases the likelihood of this sentence
without lowering the likelihood of many other sentences.
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5.2 Bijectivity Constraints

Bijectivity constraints are based on the observation that in most gold alignments, words are aligned
one-to-one. We would like to introduce this trend into the model, but adding this to the model di-
rectly breaks the Markov property. In fact, summing over one-to-one or near one-to-one weighted
matchings is a classical #P-Complete problem (Valiant, 1979). However, introducing alignment
degree constraints in expectation in the PR framework is easy and tractable. We simply add in-
equality constraints E[φ(x,y)] ≤ 1 where we have one feature for each source word j that counts
how many times it is aligned to a target word in the alignment y:

Bijective Features : φj(x,y) =
∑
i

1(yi = j).

For example, in the alignment at the top right of Figure 4, the posteriors over the source word
schism clearly sum to more than 1. The effect of applying PR constraints to the posteriors is shown in
the second row. Enforcing the one to (at most) one constraint clearly alleviates the garbage collector
effect. Moreover, when distributing the probability mass to the other words, most of the probability
mass goes into the correct positions (as can be seen by comparison to the gold alignments).

5.3 Symmetry Constraints

Word alignment should not depend on translation direction, but this principle is clearly violated
by the directional models. In fact, each directional model makes different mistakes. The standard
approach is to train two models independently and then intersect their predictions (Och and Ney,
2003). However, we show that it is much better to train two directional models concurrently, cou-
pling their posterior distributions over alignments with constraints that force them to approximately
agree. The idea of training jointly has also been explored by Matusov et al. (2004) and Liang et al.
(2006), although their formalization is quite different.

Let the directional models be defined as: −→p (−→y ) (forward) and←−p (←−y ) (backward). We suppress
dependence on xs and xt for brevity. Define y to range over the union of all possible directional
alignments −→y ∪←−y . We then define a mixture model p(y) = 1

2
−→p (y) + 1

2
←−p (y) where←−p (−→y ) = 0

and vice-versa (i.e., the alignment of one directional model has probability zero according to the
other model). We then define the following feature for each target-source position pair i, j:

Symmetric Features : φij(x,y) =


+1 y ∈ −→y and −→yi = j

−1 y ∈ ←−y and←−yj = i

0 otherwise

.

The feature takes the value zero in expectation if a word pair i, j is aligned with equal probability
in both directions. So the constraint we want to impose is Eq[φij(x,y)] = 0 (possibly with some
small violation). Note that this constraint is only feasible if the posteriors are bijective. Clearly
these features are fully factored, so to compute expectations of these features under the model q we
only need to be able to compute them under each directional model, as we show below. To see this,
we have by the definition of qλ and pθ,

qλ(y | x) =
−→p (y | x) +←−p (y | x)

2
exp{−λ · φ(x,y)}

Z
=
−→q (y | x)

Z−→q
−→p (x)

+←−q (y | x)
Z←−q
←−p (x)

2Z
,

(37)
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where we have defined:

−→q (y | x) =
1
Z−→q

−→p (y,x) exp{−λ · φ(x,y)} with Z−→q =
∑
y

−→p (y,x) exp{−λ · φ(x,y)},

←−q (y | x) =
1
Z←−q

←−p (y,x) exp{−λ · φ(x,y)} with Z←−q =
∑
y

←−p (y,x) exp{−λ · φ(x,y)},

Z =
1
2

(
Z−→q−→p (x)

+
Z←−q←−p (x)

)
.

All these quantities can be computed separately in each model.
The last row in Figure 4 shows both directional posteriors after imposing the symmetric con-

straint. Note that the projected posteriors are equal in the two models. Also, one can see that in most
cases the probability mass was moved to the correct place with the exception of the word pair inter-
nal/le; this is because the word internal does not appear on the French side, but the model still has
to spread around the probability mass for that word. In this case the model decided to accumulate it
on the word le instead of moving it to the null word.

5.4 Results

We evaluated the constraints using the Hansards corpus (Och and Ney, 2000) of English/French.
Following prior work by Och and Ney (2003), we initialize the Model 1 translation table with
uniform probabilities over word pairs that occur together in same sentence. The HMM is initialized
with the translation probabilities from Model 1 and with uniform distortion probabilities. We train
M1 for 5 iterations and train the HMM model until no further improvement on precision and recall
is seen on standard (small) development set for this corpus. We note that when using regular EM
training this requires around 4 iterations, while just 2 iterations suffices when using PR. This is
likely due to the added information that the constraints provide. We use a 40 word maximum length
cutoff for training sentences and train all models on 100, 000 sentences, testing precision and recall
on the standard test set.

Figure 5.4 shows the precision vs recall curves of both models (EN-FR, FR-EN independently)
when training using standard EM versus PR with both constraints, and the results of additionally
applying the constraints at decode time in order to tease apart the effect of the constraints during
training vs. during testing. The first observation is that training with PR significantly boosts the
performance of each model. Moreover using the projection at decode time always increases perfor-
mance. Comparing both constraints, it seems that bijective is more useful at training time. Note that
using this constraint at decode time with regular training yields worse results than just training with
the same constraint using PR. On the other hand, the symmetric constraint is stronger at decode
time.

6. Multi-view learning

Multi-view learning refers to a set of semi-supervised methods which exploit redundant views of
the same input data (Blum and Mitchell, 1998; Collins and Singer, 1999; Brefeld et al., 2005;
Sindhwani et al., 2005). These multiple views can come in the form of context and spelling features
in the case of text processing and segmentation, hypertext link text and document contents for
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Figure 5: Precision vs Recall curves of both models using standard EM training (Regular) versus
PR with bijective constraints (Bijective) and symmetry constraints (Symmetric) and dif-
ferent decoding types: decoding without any projection (NP), doing bijective projection
before decoding (BP), and doing symmetric projection before decoding (SP). Data is 100k
sentences of the Hansards corpus. Highest label in the legend corresponds to highest line
in the graph, second highest label to second highest line, and so on.

document classification, and multiple cameras or microphones in the case of speech and vision.
Multi-view methods typically begin by assuming that each view alone can yield a good predictor.
Under this assumption, we can regularize the models from each view by constraining the amount
by which we permit them to disagree on unlabeled instances. This regularization can lead to better
convergence by significantly decreasing the effective size of our hypothesis class (Balcan and Blum,
2005; Kakade and Foster, 2007; Rosenberg and Bartlett, 2007). This idea is related to the symmetry
constraints described in Section 5.

In this section, we use PR to derive a multi-view learning algorithm. The idea is very simple:
train a model for each view, and use constraints that the models should agree on the label distribu-
tion. Where our work is most similar to co-regularization schemes, a minimum Kullbeck-Leibler
(KL) distance projection can be computed in closed form resulting in an algorithm that performs
better than both CoBoosting and two view Perceptron on several natural language processing tasks.
In this case, the resulting regularizer is identical to adding a penalty term based on the Bhattacharyya
distance (Kailath, 1967) between models trained using different views.

In addition, this framework allows us to use different labeled training sets for the two classifiers,
in the case where they have different label sets. That is, we don’t require that our two views are both
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on the same labeled corpus. In that case, we can reduce the hypothesis space by preferring pairs of
models that agree on compatible labeling of some additional unlabeled data rather than on identical
labeling, while still minimizing KL in closed form. When the two views come from models that
differ not only in the label set but also in the model structure of the output space, our framework can
still encourage agreement, but the KL minimization cannot be computed in closed form. Finally, this
method uses soft assignments to latent variables resulting in a more stable optimization procedure.

6.1 Stochastic Agreement

Note that the constraint in this section is similar to the one described in Section 5, but here we focus
on discriminative learning and the formulation is slightly different. For notational convenience,
we focus on two view learning in this exposition, however the generalization to more than two
views is fairly straightforward. Also, we focus on two discriminative log-linear models and start
by considering the setting of complete agreement. In this setting we have a common desired output
for the two models and we believe that each of the two views is sufficiently rich to predict labels
accurately. We can leverage this knowledge by restricting our search to model pairs p1,p2 that satisfy
p1(y | x) ≈ p2(y | x). Since p1 and p2 each define a distribution over labels, we will consider the
product distribution p1(y1)p2(y2) and define constraint features such that our proposal distribution
q(y1,y2) will have the same marginal for y1 and y2. In particular, we will have one constraint
feature for each label y:

φy(y1,y2) = δ(y1 = y)− δ(y2 = y) (38)

Where δ(·) is the 0-1 indicator function. The constraint set Q = {q : Eq[φ] = 0} will require that
the marginals over the two output variables are identical q(y1) = q(y2). It will be useful in the
sequel to define an agreement between two models agree(p1, p2) as

agree(p1, p2) = arg min
q

KL(q(y1,y2)||p1(y1)p2(y2)) s. t. Eq[φ] = 0 (39)

Proposition 6.1 relates the Bhattacharyya regularization term to the value of the optimization prob-
lem in Equation 39. The Bhattacharyya distance is a very natural, symmetric measure of difference
between distributions which has been used in many signal detection applications (Kailath, 1967). It
is also related to the well-known Hellinger distance.

Proposition 6.1 The Bhattacharyya distance − log
∑

y

√
p1(y)p2(y) is equal to 1

2 of the value of
the convex optimization problem

min
q∈Q

KL(q(y1,y2)||p1(y1)p2(y2))

where Q = {q : Eq[δ(y1 = y)− δ(y2 = y)] = 0 ∀y} ,
(40)

and where δ(cond) is 1 if cond is true and 0 otherwise. Furthermore, the minimizer decomposes as
q(y1,y2) = q1(y1)q2(y2) and is given by qi(y) ∝

√
p1(y)p2(y).

Proof Taking the dual of the optimization problem in Equation 40 we get

arg max
λ

− log
∑
y1,y2

p(y1,y2) exp(λ · φ) (41)
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with q(y1,y2) ∝ p(y1,y2) exp(λ · φ(y1,y2)). Where φ(y1,y2) is a vector of features of the
form δ(y1 = y) − δ(y2 = y) with one entry for each possible label y. Noting that the features
decompose into φ′(y1) − φ′(y2), we know that q(y1,y2) decomposes as q1(y1)q2(y2). Further-
more, our constraints require that q1(y) = q2(y)∀y so we have q(y1)q(y2) ∝ p1(y1) exp(λ ·
φ′(y1))p2(y2) exp(−λ · φ′(y2)). Letting y1 = y2 we have q(y)2 = p1(y)p2(y) which gives us
a closed form computation of agree(p1, p2) ∝

√
p1(y)p2(y). Substituting this solution into the

problem of Proposition 6.1, and performing algebraic simplification yields the desired result.

Replacing the minimum KL term in Equation 6 with a Bhattacharyya regularization term yields
the objective

min
θ
L1(θ1) + L2(θ2) + cEU [B(p1(θ1), p2(θ2))] (42)

whereLi = E[− log(pi(yi|x; θi))]+ 1
σ2
i
||θi||2 for i = 1, 2 are the standard regularized log likelihood

losses of the models p1 and p2, EU [B(p1, p2)] is the expected Bhattacharyya distance (Kailath,
1967) between the predictions of the two models on the unlabeled data, and c is a constant defining
the relative weight of the unlabeled data relative to the labeled data.

Our regularizer extends to full agreement for undirected graphical models. In the case where p1

and p2 have the same structure, q = agree(p1, p2) will share this structure and the projection can
be computed in closed form.

Proposition 6.2 Suppose pi(Y|X), i ∈ {1, 2} factor as a set of clique potentials from a set of
cliques C:

pi(Y|X) =
1

Zi(X)

∏
c∈C

ψi(X,Yc)

then qi(Y) also factors as a product over clique potentials in C, and can be computed in closed
form modulo normalization as q(Y1,Y2) = q1(Y1)q2(Y2) with

qi(Y|X) =
1

Z ′(X)

∏
c∈C

√
ψ1(X,Yc)ψ2(X,Yc) (43)

Proof The proof is simple algebraic manipulation. We start with Equation 44, an application of
Proposition 6.1.

qi(Y)2 ∝ p1(Y|X)p2(Y|X) (44)

= Z−1
1 Z−1

2

∏
c

ψ1(X,Yc)ψ2(X,Yc) (45)

=

(
1

Z ′(X)

∏
c

√
ψ1(X,Yc)ψ2(X,Yc)

)2

(46)

Note that Proposition 6.2 is not a special case of Proposition 2.2 because we have defined one
constraint feature φy for each possible labeling y, and these do not decompose according to C. We
could alternatively have proven that ensuring agreement on clique potentials is identical to ensuring
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agreement on labelings. In the case of log-linear Markov random fields, the clique potentials are
stored in log space so computing q corresponds to averaging the values before computing normal-
ization.

6.2 Partial agreement and hierarchical labels

Our method extends naturally to partial-agreement scenarios. For example we can encourage two
part of speech taggers with different tag sets to produce compatible parts of speech, such as noun
in tag set one and singular-noun in tag set 2, as opposed to noun in tag set 1 and verb in tag set 2.
In particular, suppose we have a mapping from both label sets into a common space where it makes
sense to encourage agreement. For the part of speech tagging example, this could mean mapping
all nouns from both tag sets into a single class, all verbs into another class and so on. In general
suppose we have functions g1(y1) and g2(y2) that map variables for the two models onto the same
space {z}. Then, pi(yi) and gi induce a distribution:

pi(z) =
∑

y : gi(y)=z

pi(y) and pi(yi|z) = pi(yi)/pi(z).

We can encourage p1(z) ≈ p2(z) by adding a feature for each label in the joint space:

φz(yi) =


1 if i = 1 and g1(y1) = z
−1 if i = 2 and g2(y2) = z
0 otherwise.

(47)

In this case our objective becomes:

min
θ
L1(θ1) + L2(θ2) + cEU [B(p1(z), p2(z))] . (48)

In the special case where some labels are identical for the two models and others are incompatible,
we have g1(z1) mapping the incompatible labels into one bin and the others into their own special
bins. Proposition 6.3 along with the optimization algorithm described in Section 2.6 allows us to
optimize this objective.

Proposition 6.3 The Bhattacharyya distance − log
∑

z

√
p1(z)p2(z) is 1

2 the value of the convex
optimization problem

min
q

KL(q(Y1,Y2)||p1(Y1)p2(Y2))

s. t. Eq(φ) = 0,

where the constraint features φ are defined as in Equation 47. Furthermore, the minimizer decom-
poses as q(Y1,Y2) = q1(Y1|z1)q1(z1)q2(Y2|z2)q2(z2), where q1(z1) = q2(z2) ∝

√
p1(z1)p2(z2)

and qi(Yi|zi) = pi(Yi|zi) i ∈ {1, 2}.

Note that the computation of agree(p1, p2) is still in closed form if our models are unstructured.
Unfortunately, if we collapse some labels for structured models, p(Y) might not have the same

Markov properties as p(z). For example, consider the case where p is a distribution over three states
(1,2,3) that assigns probability 1 to the sequence (1,2,3,1,2,3,. . . ) and probability zero to other
sequences. This is a first-order Markov chain. If the mapping is 1 7→ 1 and 2, 3 7→ 0 then p(y)
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assigns probability 1 to (1,0,0,1,0,0,. . . ), which cannot be represented as a first-order Markov chain.
Essentially, the original chain relied on being able to distinguish between the allowable transition
(2,3) and the disallowed transition (3,2). When we collapse the states, both of these transitions map
to (0,0) and cannot be distinguished. Consequently, the closed form solution given in Proposition 6.3
is not usable. Potentially, we could compute some approximation to p(y) and from that compute an
approximation to q. Instead, we re-formulate our constraints to require only that the marginals of
each clique in p1 and p2 match each other rather than requiring the joint to have the same probability:

φc,zc(Y1,Y2) =


1 if i = 1 and g1(y1)c = zc
−1 if i = 2 and g2(y2)c = zc
0 otherwise.

(49)

By Proposition 2.2, the features in Equation 49 lead to a q that respects the Markov properties of
the original models.

6.3 Relation to other multi-view learning

To avoid a long detour from PR, we describe here only CoBoosting (Collins and Singer, 1999) and
two view Perceptron (Brefeld et al., 2005), the frameworks with which we empirically compare
our method in the next section. Since these methods are based on different objective functions
from ours it is worth examining where each one works best. Altun et al. (2003) compare log-loss
and exp-loss for sequential problems. They find that the loss function does not have as great an
effect on performance as the feature choice. However, they also note that exp-loss is expected to
perform better for clean data, while log-loss is expected to perform better when there is label noise.
The intuition behind this is in the rate of growth of the loss functions. Exp-loss grows exponentially
with misclassification margin while log-loss grows linearly. Consequently when there is label noise,
AdaBoost focuses more on modeling the noise. Since CoBoosting optimizes a co-regularized exp-
loss while our work optimizes a co-regularized log-loss we expect to do better on problems where
the labels are noisy.

To get more intuition about this, Figure 6 shows the co-regularization loss functions for our
method, CoBoosting, and co-regularized least squares (Sindhwani et al., 2005). For two underlying
binary linear classifiers, ŷ1 = sign(w1 · x) and ŷ2 = sign(w2 · x), the horizontal axes represent
the values ŷ1 and ŷ2, while the vertical axis is the loss. If we consider the plane parallel to the
page, we see how the different co-regularizers penalize the classifiers when they disagree and are
equally confident in their decision. Restricted to this plane, all three co-regularizers grow at the
same asymptotic rate as the loss functions for the individual models: Linearly for our work, expo-
nentially for CoBoosting and quadratically for co-RLS. If we look at the area where the two models
agree (the flat part of the CoBoosting graph) we see what the penalty is when the classifiers agree
but have different confidence. In this case co-RLS is harshest since it penalizes differences in the
dot product equally regardless of the absolute value of the dot product. Intuitively, this is a problem.
If one model predicts 1 with confidence 0.5 and the other predicts -1 with confidence 0.5 they are
disagreeing while if they both predict 1 with confidence 1000 and 1001 respectively, they are agree-
ing on the label and are very close in their confidence estimates. At the other extreme, CoBoosting
imposes almost no penalty whenever the two classifiers agree, regardless of their confidence. The

24



POSTERIOR REGULARIZATION

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
0

0.5

1

1.5

2

Classifier 1
Classifier 2

C
o−

R
eg

ul
ar

iz
er

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
0

5

10

15

20

25

Classifier 1
Classifier 2

C
o−

R
eg

ul
ar

iz
er

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
0

5

10

15

20

25

Classifier 1Classifier 2

C
o−

R
eg

ul
ar

iz
er

Figure 6: Different Loss Functions. Top: Bhattacharyya distance regularization. Bottom left: Exp-
loss regularization. Bottom right: Least squares regularization.

Bhattacharyya distance co-regularizer lies between these extremes, penalizing differences in confi-
dence near the origin but is more lenient when the classifiers are both very confident and agree.

Finally, if we have labeled data from one domain but want to apply it to another domain we
can use any of the co-training frameworks mentioned earlier, including our own, to perform do-
main transfer. For sentiment classification we will see that our method performs comparably with
Structural Correspondence Learning (Blitzer et al., 2006), which is based on Alternating Structure
Optimization (Ando and Zhang, 2005).

6.4 Experiments

Our first set of experiments is for transfer learning for sentiment classification. We use the data
from Blitzer et al. (2007). The two views are generated from a random split of the features. We
compare our method to several supervised methods as well as CoBoosting (Collins and Singer,
1999), two view Perceptron (Brefeld et al., 2005) and structural correspondence learning (Blitzer
et al., 2007). Results are in Table 3. The column labeled “SCL” contains the best results from Blitzer
et al. (2007), and is not directly comparable with the other methods since it uses some extra knowl-
edge about the transfer task to choose auxiliary problems. For all the two-view methods we weigh
the total labeled data equally with the total unlabeled data. We regularize the maximum entropy
classifiers with a unit variance Gaussian prior. Out of the 12 transfer learning tasks, our method per-
forms best in 6 cases, SCL in 4, while CoBoosting performs best only once. Two view Perceptron
never outperforms all other methods. One important reason for the success of our method is the
relative strength of the maximum entropy classifier relative to the other supervised methods for this
particular task. We expect that CoBoosting will perform better than our method in situations where
Boosting significantly out-performs maximum entropy.
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Domains MIRA Boost Perc mx-ent SCL CoBoost coPerc PR
books→dvds 77.2 72.0 74 78.5 75.8 78.8 75.5 79.8

dvds→books 72.8 74.8 74.5 80.3 79.7 79.8 74.5 81.3
books→electr 70.8 70.3 73.3 72.5 75.9 77.0 69.3 75.5
electr→books 70.7 62.5 73 72.8 75.4 71.0 67.5 74.3
books→kitchn 74.5 76.3 73.5 77.8 78.9 78.0 76.5 81.0
kitchn→books 70.9 66.5 67.3 70.3 68.6 69.8 66 72.8

dvds→electr 73.0 73.2 73.5 75.5 74.1 75.3 71.2 76.5
electr→dvds 70.6 66.3 64.8 69.3 76.2 73.5 63.3 73.0
dvds→kitchn 74.0 75.5 78.3 80.5 81.4 79.0 78.25 82.8

kitchn→dvds 72.7 61.8 64 69.5 76.9 70.1 60.5 72.8
electr→kitchn 84.0 73.2 81 86.5 85.9 85.0 83.3 85.8

kitchn→electr 82.7 66.3 81 82.8 86.8 83.0 80.5 85.5

Table 3: Performance of several methods on a sentiment classification transfer learning task. Re-
views of objects of one type are used to train a classifier for reviews of objects of another
type. The abbreviations in the column names are as follows. Boost: AdaBoost algorithm,
Perc: Perceptron, mx-ent: maximum entropy, SCL: structural correspondence learning,
CoBoost: CoBoosting, coPerc: two view Perceptron, PR: this work. The best accuracy is
shown in bold for each task.

The next set of our experiments are on named entity disambiguation. Given a set of split named
entities, we want to predict what type of named entity each one is. We use the training data from
the 2003 CoNLL shared task (Sang and Meulder, 2003). The two views comprise content versus
context features. The content features are words, POS tags and character n-grams of length 3 for
all tokens in the named entity, while context features the same but for three words before and after
the named entity. We used 2000 examples as test data and roughly 30,000 as unlabeled (train) data.
Table 4 shows the results for different amounts of labeled train data. For this data, we choose the
variance of the Gaussian prior as well as the relative weighting of the labeled and unlabeled data by
cross validation on the train set. In order to test whether the advantage our method gets is from the
joint objective or from the use of agree(p1, p2), which is an instance of logarithmic opinion pools,
we also report the performance of using agree(p1, p2) when the two views p1 and p2 have been
trained only on the labeled data. In the column labeled “agree0” we see that for this dataset the
benefit of our method comes from the joint objective function rather than from the use of logarithmic
opinion pools.

In order to investigate the applicability of our method to structured learning we apply it to the
shallow parsing task of noun phrase chunking. We our experiments are on the English training
portion of the CoNLL 2000 shared task (Sang and Buchholz, 2000). We select 500 sentences as
test data and varying amounts of data for training; the remainder was used as unlabeled (train) data.
We use content and context views, where the content view is the current word and POS tag while
the context view is the previous and next words and POS tags. We regularize the CRFs with a
variance 10 Gaussian prior and weigh the unlabeled data so that it has the same total weight as the
labeled data. The variance value was chosen based on preliminary experiments with the data. Table
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Data size mx-ent agree0 PR RRE
500 74.0 74.4 76.4 9.2%
1000 80.0 80.0 81.7 8.5%
2000 83.4 83.4 84.8 8.4%

Table 4: Named entity disambiguation. Prior variance and c chosen by cross validation. agree0

refers to performance of two view model before first iteration of EM. RRE is reduction in
error relative to error of MaxEnt model.

size CRF SAR(RRE) Perc coPerc
10 73.2 78.2 (19%) 69.4 71.2
20 79.4 84.2 (23%) 74.4 76.8
50 86.3 86.9 (4%) 80.1 84.1

100 88.5 88.9 (3%) 86.1 88.1
200 89.6 89.6 (0%) 89.3 89.7
500 91.3 90.6 (-8%) 90.8 90.9
1000 91.6 91.1 (-6%) 91.5 91.8

Table 5: F-1 scores for noun phrase chunking with context/content views. Test data comprises 500
sentences, with 8436 sentences divided among labeled and unlabeled train data. The best
score is shown in bold for each train data size.

5 shows the F-1 scores of the different models. We compare our method to a monolithic CRF as
well as averaged Perceptron the two view Perceptron of Brefeld et al. (2005) with averaging. The
Perceptron models were trained for 20 iterations. Preliminary experiments show that performance
on held out data does not change after 10 iterations so we believe the models have converged. Both
two view semi-supervised methods show gains over the corresponding fully-supervised method for
10-100 sentences of training data, but do not improve further as the amount of labeled data increases.
The method presented in this paper out-performs two view Perceptron when the amount of labeled
data is very small, probably because regularized CRFs perform better than Perceptron for small
amounts of data. As the number of training sentences increases, two view Perceptron performs
as well as our method, but at this point it has little or no improvement over the fully-supervised
Perceptron.

7. Cross lingual projection

For English and a handful of other languages, there are large, well-annotated corpora with a variety
of linguistic information ranging from named entity to discourse structure. Unfortunately, for the
vast majority of languages very few linguistic resources are available. This situation is likely to per-
sist because of the expense of creating annotated corpora that require linguistic expertise (Abeillé,
2003). On the other hand, parallel corpora between many resource-poor languages and resource-
rich languages are ample, motivating recent interest in transferring linguistic resources from one
language to another via parallel text.
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(a)

(b)

Figure 7: (a) An example word-aligned sentence pair with perfectly projected dependencies. (All
dependency edges are conserved in this case.) (b) Overview of our grammar induction
approach via bitext: the source (English) is parsed and word-aligned with target; after
filtering, projected dependencies define constraints over target parse tree space, providing
weak supervision for learning a target grammar.

Dependency grammars are one such resource. They are useful for language modeling, textual
entailment and machine translation (Haghighi et al., 2005; Chelba et al., 1997; Quirk et al., 2005;
Shen et al., 2008), to name a few tasks. Dependency grammars are arguably more robust to transfer
than constituent grammars, since syntactic relations between aligned words of parallel sentences are
better conserved in translation than phrase structure (Fox, 2002; Hwa et al., 2005). The two main
challenges to accurate training and evaluation from aligned bitext are: (1) errors in word alignments
and source language parses, (2) unaligned words due to non-literal or distant translation.

Hwa et al. (2005) proposed to learn generative dependency grammars using Collins’ parser (Collins,
1999) by constructing full target parses via projected dependencies. To address challenge (1), they
introduced on the order of one to two dozen language-specific transformation rules. To address
challenge (2), they used a set of tree-completion rules. We present here an alternative approach to
dependency grammar transfer. Our approach uses a single, intuitive PR constraint to guide gram-
mar learning. With this constraint, we avoid the need for complex tree completion rules and many
language-specific rules, yet still achieve acceptable parsing accuracy.

It should be noted that while our source of supervision, a bitext, is the same as that of Hwa
et al. (2005), our learning method is more closely related to that of Druck et al. (2009). They use
the GE framework to train a dependency parser. Their source of supervision comes in the form of
corpus-wide expected values of linguistic rules provided by a linguistic informant.

In what follows, X will indicate parallel part-of-speech tagged sentences in a bitext corpus,
along with a dependency parse of the source language. Y will indicate the dependency parses for
the target language sentences.

7.1 Approach

Figure 7(a) shows an aligned sentence pair example where dependencies are perfectly “conserved”
across the alignment. An edge from English parent p to child c is called conserved if word p aligns
to word p′ in the second language, c aligns to c′ in the second language, and p′ is the parent of c′.
Note that we are not restricting ourselves to one-to-one alignments here; p, c, p′, and c′ can all also
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align to other words. Unfortunately the sentence in Figure 7(a) is highly unusual in its amount of
dependency conservation, so we need to do more than directly transfer conserved edges to get good
parsing accuracy.

The key to our approach is a single PR constraint, which ensures that the expected proportion
of conserved edges in a sentence pair is at least η (the exact proportion we used was 0.9, which was
determined using unlabeled data as described in the experiments section). Specifically, let Cx be
the set of directed edges projected from English for a given sentence x. Then given a parse y, the
proportion of conserved edges is φ(x,y) = 1

|Cx|
∑

y∈y 1(y ∈ Cx) and the expected proportion of
conserved edges under distribution p(y | x) is

Ep[φ(x,y)] =
1
|Cx|

∑
y∈Cx

p(y | x).

Consider how this constraint addresses errors in word alignment and source language parses,
challenge (1) from above. First, note that we are constraining groups of edges rather than a single
edge. For example, in some sentence pair we might find 10 edges that have both end points aligned
and can be transferred. Rather than requiring our target language parse to contain each of the 10
edges, we require that the expected number of edges from this set is at least 10η. This gives the
parser freedom to have some uncertainty about which edges to include, or alternatively to choose to
exclude some of the transferred edges.

Our constraint does not address unaligned words due to non-literal or distant translation, chal-
lenge (2), as directly. Yet, we find that the constraint sufficiently limits the distribution over possible
parses of unaligned words, such that the parser still makes reasonable choices for them. It is also
worth noting that if we wished to more directly address challenge (2), we could add additional con-
straint features to the PR framework. For example, it seems intuitive that unaligned words might
tend to not be as vital to the sentence as aligned words, and thus we could constrain the number of
children of unaligned words to fall below some threshold.

At a high level our approach is illustrated in Figure 7(b). A parallel corpus is word-level aligned
using the method described in Section 5, where we train an alignment model via PR using symmetry
constraints. The source (English) is parsed using a dependency parser (McDonald et al., 2005).
Then, the filtering stage eliminates low-confidence alignments such as noun-to-verb alignments,
restricts the training set to exclude possible sentence fragments, and follows the method of Klein
and Manning (2004) in stripping out punctuation. We then learn a probabilistic parsing model using
PR. In our experiments we evaluate the learned models on dependency treebanks (Nivre et al.,
2007).

7.2 Parsing Models

We explored two parsing models: a generative model used by several authors for unsupervised
induction and a discriminative model previously used for fully supervised training.

The discriminative parser is based on the edge-factored model and features of the MSTParser (Mc-
Donald et al., 2005). The parsing model defines a conditional distribution pθ(y | x) over each pro-
jective parse tree y for a particular sentence x, parameterized by a vector θ. The probability of any
particular parse is

pθ(y | x) ∝
∏
y∈y

eθ·f(y,x), (50)
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Basic Uni-gram Features
xi-word, xi-pos
xi-word
xi-pos
xj-word, xj-pos
xj-word
xj-pos

Basic Bi-gram Features
xi-word, xi-pos, xj-word, xj-pos
xi-pos, xj-word, xj-pos
xi-word, xj-word, xj-pos
xi-word, xi-pos, xj-pos
xi-word, xi-pos, xj-word
xi-word, xj-word
xi-pos, xj-pos

In Between POS Features
xi-pos, b-pos, xj-pos

Surrounding Word POS Features
xi-pos, xi-pos+1, xj-pos-1, xj-pos
xi-pos-1, xi-pos, xj-pos-1, xj-pos
xi-pos, xi-pos+1, xj-pos, xj-pos+1
xi-pos-1, xi-pos, xj-pos, xj-pos+1

Table 6: Features used by the MSTParser. For each edge (i, j), xi-word is the parent word and
xj-word is the child word, analogously for POS tags. The +1 and -1 denote preceeding
and following tokens in the sentence, while b denotes tokens between xi and xj .

where y is a directed edge contained in the parse tree y and f is a feature function. In the fully
supervised experiments we run for comparison, parameter estimation is performed by stochastic
gradient ascent on the conditional likelihood function, similar to maximum entropy models or con-
ditional random fields. One needs to be able to compute expectations of the features f(y,x) under
the distribution pθ(y | x). A version of the inside-outside algorithm (Lee and Choi, 1997) performs
this computation. Viterbi decoding is done using Eisner’s algorithm (Eisner, 1996).

We also used a generative model based on dependency model with valence (Klein and Manning,
2004). Under this model, the probability of a particular parse y and a sentence with part of speech
tags x is given by

pθ(y,x) = proot(r(x)) · (51)(∏
y∈y

p¬stop(yp, yd, vy) pchild(yp, yd, yc)
)
·(∏

x∈x
pstop(x, left, vl) pstop(x, right, vr)

)
where r(x) is the part of speech tag of the root of the parse tree y, y is an edge from parent yp
to child yc in direction yd, either left or right, and vy indicates valency—false if yp has no other
children further from it in direction yd than yc, true otherwise. The valencies vr/vl are marked as
true if x has any children on the left/right in y, false otherwise.

We regularize the models by parameter prior− log p(θ) = R(θ), where p(θ) is Gaussian for the
discriminative model and Dirichlet for the generative.

7.3 Experiments

We evaluate our approach by transferring from an English parser trained on the Penn treebank to
Bulgarian and Spanish. We evaluate our results on the Bulgarian and Spanish corpora from the
CoNLL X shared task. The Bulgarian experiments transfer a parser from English to Bulgarian,
using the OpenSubtitles corpus (Tiedemann, 2007). The Spanish experiments transfer from English
to Spanish using the Spanish portion of the Europarl corpus (Koehn, 2005). For both corpora,
we performed word alignments with the open source PostCAT (Graça et al., 2009c) toolkit. We
used the Tokyo tagger (Tsuruoka and Tsujii, 2005) to POS tag the English tokens, and generated
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Discriminative Generative
Bulgarian Spanish Bulgarian Spanish

Baseline 63.8 67.6 66.5 68.2
Post.Reg. 66.9 70.6 67.8 69.5

Table 7: Accuracy values at the 10k training sentences point of Figure 8.

parses using the first-order model of McDonald et al. (2005) with projective decoding, trained on
sections 2-21 of the Penn treebank with dependencies extracted using the head rules of Yamada
and Matsumoto (2003). For Bulgarian we trained the Stanford POS tagger (Toutanova et al., 2003)
on the Bulgtreebank corpus from CoNLL X. The Spanish Europarl data was POS tagged with
the FreeLing language analyzer (Atserias et al., 2006). The discriminative model used the same
features as MSTParser, summarized in Table 6. Our model uses constraints of the form: the expected
proportion of conserved edges in a sentence pair is at least η = 90%.4

In order to better evaluate our method, we construct a baseline inspired by Hwa et al. (2005).
The baseline creates a full parse tree from the incomplete and possibly conflicting transferred edges
using a simple random process. We start with no edges and try to add edges one at a time verifying
at each step that it is possible to complete the tree. We first try to add the transferred edges in
random order, then for each orphan node we try all possible parents (both in random order). We
then use this full labeling as supervision for a parser. Note that this baseline is very similar to the
first iteration of our model, since for a large corpus the different random choices made in different
sentences tend to smooth each other out. We also tried to create rules for the adoption of orphans,
but the simple rules we tried added bias and performed worse than the baseline we report.

7.3.1 RESULTS

Models are evaluated based on attachment accuracy—the fraction of words assigned the correct
parent. Figure 8 shows that models generally improve with more transfer-type data. It also shows
our method consistently outperforms the baseline. The exact accuracy numbers for the 10k training
sentences point of Figure 8 are given in Table 7. Link-left baselines for these corpora are much
lower: 33.8% and 27.9% for Bulgarian and Spanish respectively.

7.3.2 GENERATIVE PARSER

The generative model we use is a state of the art model for unsupervised parsing. As smoothing
we add a very small backoff probability of 4.5 × 10−5 to each learned parameter. Unfortunately,
we found generative model performance was disappointing in the unsupervised setting. Using the
initialization procedure from Klein and Manning (2004), the maximum unsupervised accuracy it
achieves is 55.4% for Bulgarian and 41.7% for Spanish, and these results are not stable. Changing
the initialization parameters or training sample drastically affects the results, even for samples with

4. We chose η in the following way: we split the unlabeled parallel text into two portions. We trained models with
different η on one portion and ran it on the other portion. We chose the model with the highest fraction of conserved
constraints on the second portion.

31



GANCHEV, GRAÇA, GILLENWATER, TASKAR

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.1  1  10

ac
cu

ra
cy

 (
%

)

training data size (thousands of sentences)

our method
baseline

 0.64

 0.66

 0.68

 0.7

 0.1  1  10

ac
cu

ra
cy

 (
%

)

training data size (thousands of sentences)

our method
baseline

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.1  1  10

ac
cu

ra
cy

 (
%

)

training data size (thousands of sentences)

our method
baseline

 0.64

 0.66

 0.68

 0.7

 0.1  1  10

ac
cu

ra
cy

 (
%

)

training data size (thousands of sentences)

our method
baseline

Figure 8: Learning curves. Each graph compares transferring a single tree of edges (baseline) and
transferring all possible projected edges (our method). The models were trained on sen-
tences of length up to 20 and tested on CoNLL train sentences of length up to 10. Punctu-
ation was stripped at train time. Top: Bulgarian. Bottom: Spanish. Left: Discriminative
model. Right: Generative model.

several thousand sentences. But when we use the transferred information to constrain the learning,
EM stabilizes and achieves much better performance, also beating the Hwa et al. (2005)-inspired
baseline. With the transferred information, even setting all parameters equal at the outset does not
prevent the model from learning the dependency structure of the aligned language. Figure 9 shows
an example of how PR projection helps better estimate posteriors of two example sentences.

7.3.3 DISCRIMINATIVE PARSER

We trained our discriminative parser for 100 iterations of online EM with a Gaussian prior variance
of 100. The transfer system performs better than the unsupervised generative model and the baseline
model for both Bulgarian and Spanish. We observed another desirable property of the discriminative
model: while the generative model can get confused and perform poorly when the training data
contains very long sentences, the discriminative parser does not appear to have this drawback. In
fact we observed that as the maximum training sentence length increased, the parsing performance
also improved.
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Necesitamos ver cómo se selecciona su personal
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Figure 9: Posteriors of two Spanish sentences from Europarl. The number on each edge indicates
the edge’s posterior probability. Edges with probability less than 0.25 are not shown.
Darker (more saturated) edges are higher probability. Green indicates a correct edge,
red an incorrect. Dotted edges are conserved. (a) The gold source and target parses and
their alignment. (b) Unsupervised model initialized as per Klein and Manning (2004) and
trained for 100 EM iterations. (c) PR projection applied to the posteriors of the middle
figure, forcing Ep[C] ≥ C ∗ η = 3 ∗ 0.9, where C is the number of conserved edges.
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Figure 10: An illustration of `1/`∞ regularization. Left panel: initial tag distributions (columns)
for 15 instances of a word. Middle panel: optimal regularization parameters λ, each row
sums to σ = 20. Right panel: q concentrates the posteriors for all instances on the NN
tag, reducing the `1/`∞ norm from just under 4 to a little over 1.

8. Enforcing sparsity structure

Many important NLP tasks (e.g. tagging, parsing, named-entity recognition) involve word classi-
fication. Often, we know a priori that a word type might belong to a small set of classes (where
the class of a specific instance depends on its context) and should never belong to any of the many
possible classes outside this small set. The part of speech tagging task, described in the running
example, is one instance of this phenomenon. For example, consider the word type “run”. It might
belong to the verb class in some instances and the noun class in others, but it will never be an ad-
jective, adverb, conjunction, determiner, etc. Each word type can in theory be associated with any
existing tag, but we know that in reality each word type is only ever associated with a few tags.

Unsupervised induction of this latent structure is normally performed using the EM algorithm,
but it has exhibited disappointing performance in previous work. One well-known reason for this is
that EM tends to allow each word to be generated by most POS tags some of the time. In reality, we
would like most words to have a small number of possible POS tags. Previous work has attempted
to solve this problem by applying the Bayesian approach, using a prior to encourage sparsity in
the model parameters (Gao and Johnson, 2008; Johnson, 2007; Goldwater and Griffiths, 2007).
However, this approach has the drawback of enforcing sparsity in the wrong direction; sparsity
at the parameter level encodes a preference that each POS tag should generate only a few words,
instead of encoding that each word should generate only a few POS tags. Here we explore the
problem of biasing unsupervised models to favor the correct sparsity by encouraging the model to
achieve posterior sparsity on unlabeled training data.

8.1 `1/`∞ regularization

We focus on the slack-penalized formulation of Section 2.3 for this task. We choose the PR con-
straint to encourage each word to be associated with only a few parts of speech. Let the constraint
feature φwti(X,Y) have value 1 whenever the ith occurrence of word w has part of speech tag t,
and value 0 otherwise. For every word w, we would like there to be only a few POS tags t such that
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there are occurrences i where t has nonzero probability. This can be achieved if it “costs” a lot the
first time an occurrence of a word takes a particular tag, but afterwards future occurrences of the
word can receive that same tag for free. More precisely, for each word type w, we would like the
sum (`1 norm), over tags t, of the maximum (`∞ norm), over all occurrences wi of w, of p(wi | t),
to be small; we want

∑
t,w maxi p(wi | t) to be small. Note that in contrast to previous applica-

tions, these constraints are corpus-wide instead of instance-specific. For notational simplicity we
will write φwti(X,Y) = φwti(Y), since any dependence on X is captured in the subscripts of φwti.

Formally, this objective is an example of the slack-penalized formulation (as in Equation 7), but
for simplicity we will use the notation:

min
q,cwt

KL(q||pθ) + σ
∑
wt

cwt s. t. Eq[φwti] ≤ cwt. (52)

Mapping this notation to the original equation we have: b = 0 and regularization strength σ. The
constraints on the features φwti and the summation over cwt together encode the `1/`∞ norm. The
variables cwt represent the `∞ norm of φwti, cwt = ||φwti||`∞ , while the summation is the `1 norm
of cwt. The dual of this objective has a very simple form:

max
λ≥0

− log

(∑
y

pθ(Y) exp(−λ · φ(Y))

)
s. t.

∑
i

λwti ≤ σ, (53)

where Y ranges over assignments to the hidden tag variables for all of the occurrences in the training
data, φ(Y) is the vector of φwti constraint feature values for assignment Y, λ is the vector of dual
parameters λwti, and the primal parameters are q(Y) ∝ pθ(Y) exp(−λ · φ(Y)).

An advantage of using slack penalties in this case is that `1/`∞ as a slack constraint in the pri-
mal would lead to a non-differentiable dual penalty term, which somewhat complicates optimiza-
tion. Using a slack penalty makes sparsity regularization a primal penalty, yielding dual simplex
constraints, solvable efficiently via projected gradient, as described by Bertsekas (1999). Note that
the simplex constraints in Equation 53 can be interpreted as an `∞/`1 norm, which is the dual of
the `1/`∞.

Figure 10 illustrates how the `1/`∞ norm operates on a toy example. For simplicity suppose we
are only regularizing one word and our model pθ is just a product distribution over 15 instances of
the word. The left panel in Figure 10 shows the posteriors under pθ. We would like to concentrate the
posteriors on a small subset of rows. The center panel of the figure shows the λ values determined by
Equation 53, and the right panel shows the projected distribution q, which concentrates most of the
posterior on the bottom row. Note that we are not requiring the posteriors to be sparse, which would
be equivalent to preferring that the distribution is peaked; rather, we want a word to concentrate its
tag posterior on a few tags across all instances of the word. Indeed, most of the instances (columns)
become less peaked than in the original posterior to allow posterior mass to be redistributed away
from the outlier tags. Since they are more numerous than the outliers, they moved less. This also
justifies only regularizing relatively frequent events in our model.

8.2 Results

In this section we present an empirical comparison of first-order HMMs trained with three different
methods: classic EM (EM), `1/`∞ PR (Sparse), and Bayesian estimation using a variational ap-
proximation described in Johnson (2007) and Gao and Johnson (2008) (VEM). Models are trained
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Types Tokens Unk Tags `1/`∞
PTB17 23768 950028 2% 17 1.23
PT-Conll 11293 206678 8.5% 22 1.14
BulTree 12177 174160 10% 12 1.04

Table 8: Corpus statistics. All words with only one occurrence where replaced by the ‘unk’ token.
The third column shows the percentage of tokens replaced. `1/`∞ is the value of the
sparsity for a fully supervised HMM trained in all available data.

and tested on three different corpora: the Wall Street Journal portion of the Penn treebank (Marcus
et al., 1993) using a reduced set of 17 tags (Smith et al., 2005) (PTB17); the Bosque subset of the
Portuguese Floresta Sinta(c)tica Treebank (Afonso et al., 2002)5 used for the ConLL X shared task
on dependency parsing (PT-CoNLL)6; and the Bulgarian BulTreeBank (Simov et al., 2002) (Bul-
Tree) with 12 coarse tags. All words that occurred only once were replaced by the token “unk”. To
measure model sparsity, we compute the average `1/`∞ norm over words occurring more than 10
times; the label ‘L1LMax’ denotes this measure in figures. Table 8 gives statistics for each corpus
as well as the sparsity for a first-order HMM trained on the labeled data.

Following Gao and Johnson (2008), the parameters were initialized with a “pseudo E-step” as
follows: we filled the expected count matrices with numbers 1 + X × U(0, 1), where U(0, 1) is
a random number between 0 and 1 and X is a parameter. These matrices are then fed to the M-
step; the resulting “random” transition and emission probabilities are used for the first real E step.
For VEM X was set to 0.0001 (almost uniform) since this showed a significant improvement in
performance. On the other hand EM showed less sensitivity to initialization, and we used X = 1
which resulted in the best results. The models were trained for 200 iterations as longer runs did not
significantly change the results. For VEM we tested 4 different prior combinations based on the
results of Johnson (2007); in later work Gao and Johnson (2008) considered a wider range of values
but did not identify definitely better choices. Sparse was initialized with the parameters obtained by
running EM for 30 iterations, followed by 170 iterations of the new training procedure. Predictions
were obtained using posterior decoding since this consistently showed small improvements over
Viterbi decoding.

We compare the models by measuring the mutual information between the distribution of hidden
states and the distribution of the truth. Ideally, a perfect method would have mutual information
equal to the entropy of both distributions. The farther the distribution that a method produces is
from the truth the smaller the information gain is. We also evaluate the accuracy of the models using
two established mappings between hidden states and POS tags: (1-Many) maps each hidden state
to the tag with which it co-occurs the most; 1-1 (Haghighi and Klein, 2006) greedily picks a tag for
each state under the constraint of never using the same tag twice. This results in an approximation
of the optimal 1-1 mapping. If the numbers of hidden states and tags are not the same, some hidden
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Figure 11: (Top Left) Mutual information in bits between gold tag distribution and hidden state
distribution. The maximum is the entropy of the gold set (BulTree 3.05, PT-CoNLL
3.49 and PTB17 3.22), (Top Right) `1/`∞ value, and average (Bottom Left) 1-Many
error, (Bottom Right) 1-1 error over 10 different runs (same seeds used for each model)
for 200 iterations. Error bars are standard deviation for the 10 runs. All models are
first order HMMs: EM trained using expectation maximization, VEM trained using
variational EM using 0.1 state to state prior and (01,0.0001) observation prior; Sparse
trained using PR with constraint strength σ = 10, 32, 100.

states will be unassigned (and hence always wrong) or some tags not used. In all our experiments
the number of hidden states is the same as the number of POS tags.

Figure 11 (Top Left) shows mutual information between the hidden state distribution of each
method and the truth. The entropy of the true distribution are: BulTree 3.05, PT-CoNLL 3.49 and
PTB17 3.22. Sparse is the method that achieves the biggest information gain across all corpora, and
is not particularly sensitive to the strength of regularization used. Interestingly, VEM often has the
smallest `1/`∞, even though mutual information is often worst than EM.

Figure 11 (Top Right) shows the different average values of the L1LMax statistics for each
method across corpora. We see that both VEM and Sparse achieve values of `1/`∞ close to the
gold standard, on the other hand EM as expected as bigger values which confirms the intuition that
EM allows each word to be generated by most of the possible POS tags.

Figure 11 (Bottom Left) shows errors for all methods on the different corpora after 10 random
initializations using the 1-Many mapping. For both VEM and Sparse we pick parameter settings

5. http://www.linguateca.pt/Floresta/
6. http://nextens.uvt.nl/ conll/
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resulting in the best average performance. A first conclusion is that using the `1/`∞ constraint
consistently and significantly improves the results when compared with the other two methods.

Figure 11 (Bottom Right) shows the same errors for the 1-1 mapping. In this case Sparse
still beats the EM but does not always outperform VEM. One reason for this behavior is that this
metric is very sensitive to the number of word types associated with each hidden state. VEM tends
to encourage some large hidden states with many word types, which is preferable using the 1-1
mapping for large word categories such as nouns. On the other hand Sparse tends to spread the
nouns over 4 different hidden states. This difference is particularly pronounced for the condensed
tag sets (PTB17, PT-CoNLL) where different kinds of nouns are joined into one large tag. Also this
difference is bigger for VEM when the observation prior is set to bigger values (0.1), leading at the
same time to worse results in 1-Many mapping.

9. Conclusion

In this paper we have presented posterior regularization (PR), a technique for regularizing mod-
els by encoding prior knowledge in constraints on model posteriors. On the algorithmic side, we
have shown that PR can be solved efficiently in dual form, and that the regularization can be easily
incorporated into a variant of the classical EM optimization method. In relating PR to similar frame-
works, we have clarified its main advantages: faster optimization speed with respect to generalized
expectation (Mann and McCallum, 2007, 2008), and greater distributional estimation accuracy with
respect to constraint-driven learning (Chang et al., 2007). To the best of our knowledge, we are the
first to link all these learning frameworks by explicitly stating a sense in which they all approximate
the Bayesian perspective that motivates Liang et al. (2009). An interesting avenue for future work
includes an exploration of the tradeoff between computational complexity and accuracy of the dif-
ferent approximations presented in this and related work (Figure 3). For example, is there a large
performance drop as we go from GE to PR and from PR to CODL, or are the variational and MAP
approximations accurate in practice?

In addition to discussing PR’s theoretical potential, we have demonstrated that it lives up to this
potential in a wide variety realistic applications. The applications we focus on in this paper are word
alignment, multi-view learning, dependency parsing, and part of speech tagging. Yet PR can express
such a wide variety of prior knowledge that can be encoded by functions of model posteriors, and
there remains a vast array of unexplored possible applications for this technique.

In addition to using PR in other applications, we would like to investigate alternative optimiza-
tion methods. The main optimization bottleneck that PR implementations encounter is the extensive
time required for projecting the posterior distribution into the constrained posterior space. Each
evaluation of the objective or its gradient requires inference in the original model. One direction for
exploration is the use of second order or approximate second-order optimization methods. Another
potential direction is to use approximate inference in some parts of the optimization, for example
fully factored variational inference. Finally, for applications where some constraints span multiple
instances, but others do not not, it would be interesting to combine online and batch methods.

A last key extension to the current PR work is to explore the case where the constraint set Q
is not easily specified using linear constraints on some constraint features φ. Thus far we have
only developed theory and applications for linear constraints. It would be interesting to explore
applications and derive efficient learning methods when the constraints are not linear, for example,
applications with semi-definite or polynomial constraints.
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Appendix A. Scaling the strength of PR

This appendix describes how to optimize a version of our objective with scaled posterior regular-
ization strength. In this case, we will use a modified EM algorithm that maximizes:

F ′(q, θ) = L(θ)− αKL(q(Y) ‖ pθ(Y | X)) s. t. q ∈ Q (54)

where α ∈ [0, 1]. The optimization procedure closely follows the one in Section 2.6. When perform-
ing the M-step, we use a mixture of the projected posteriors q and the model posteriors pθ(Y|X) to
update the model parameters. The updated EM algorithm is:

E′ − step : max
q
F ′(q, θ) = min

q ∈ Q
KL(q(Y) ‖ pθ(Y|X)) (55)

M′ − step : max
θ
F ′(q, θ) = max

θ
(1− α)Epθ′ [log pθ(X,Y)] + αEq [log pθ(X,Y)] (56)

Note that the E′-step is identical to the one in Equation 19.

Appendix B. Proof of Proposition 2.1

The modified E-step involves a projection step that minimizes the Kullback-Leibler divergence:

arg min
q,ξ

KL(q(Y) ‖ pθ(Y|X)) s. t. Eq[φ(X,Y)]− b ≤ ξ; ||ξ||β ≤ ε (57)

Assuming the set Q = {q(Y) : ∃ξ : Eq[φ(X,Y)] − b ≤ ξ; ||ξ||β ≤ ε} is non-empty, the
corresponding Lagrangian is

max
λ≥0,α≥0,γ

min
q(Y),ξ

L(q(Y), ξ, λ, α, γ), (58)
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where

L(q, ξ, λ, α, γ) = KL(q(Y) ‖ pθ(Y|X)) + λ · (Eq[φ(X,Y)]− b− ξ)

+ α(||ξ||β − ε) + γ

(∑
Y

q(Y)− 1

)
(59)

In order to compute the dual of this Lagrangian, we first represent

α ||ξ||β = max
η

ξ · η s. t. ||η||β∗ ≤ α. (60)

This results in a variational Lagrangian

max
λ≥0,α≥0,γ

max
||η||β∗≤α

min
q(Y),ξ

L(q(Y), ξ, λ, α, γ, η), (61)

with L(q(Y), ξ, λ, α, γ, η) defined as

L(q, ξ, λ, α, γ, η) = KL(q(Y) ‖ pθ(Y|X)) + λ · (Eq[φ(X,Y)]− b− ξ)

+ξ · η − αε + γ

(∑
Y

q(Y)− 1

)
(62)

∂L(q(Y), ξ, λ, α, γ, η)
∂q(Y)

= log q(Y) + 1− log pθ(Y|X) + λ · φ(X,Y) + γ = 0 (63)

=⇒ q(Y) =
pθ(Y|X) exp(−λ · φ(X,Y))

e exp(γ)
(64)

∂L(q(Y), ξ, λ, α, γ, η)
∂ξi

= ηi − λi = 0 =⇒ η = λ (65)

Note that Equation 65 implies that we have the constraint ||λ||β∗ ≤ α and also the positive and
negative λ · ξ cancel each other out. Plugging q(Y), η = λ in L(q(Y), ξ, λ, α, γ, η) and taking the
derivative with respect to γ

∂L(λ, α, γ)
∂γ

=
∑
Y

pθ(Y|X) exp(−λ · φ(X,Y))
e exp(γ)

−1 = 0 =⇒ γ = log
(∑

Y pθ(Y|X) exp (−λ · φ(x, z))
e

)
(66)

. From there we can simplify q(Y) = pθ(Y|X) exp(−λ·φ(X,Y))
Zλ

where Zλ =
∑

Y pθ(Y|X) exp(−λ ·
φ(X,Y)) ensures that q(Y) is properly normalized. Plugging γ into L(λ, α, γ)

L(λ, α) = − log(Zλ)− b · λ− αε (67)

Now our objective is:

max
λ≥0,α≥0

− log(Zλ)− b · λ− αε s. t. ||λ||β∗ ≤ α (68)

We can analytically see that the optimum of this objective with respect to α is α = ||λ||β∗ and
placing this in L(λ, α) we get the dual objective:

Dual E′ : arg max
λ≥0

−b · λ− log(Zλ)− ε ||λ||β∗ (69)

as desired.
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