
A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes
Jennifer Gillenwater1, Alex Kulesza1, Zelda Mariet1,2, Sergei Vassilvitskii1 1Google Research NYC, 2Massachusetts Institute of Technology

Motivation
Diverse results are desirable in information retrieval and recommender systems

Determinantal Point Processes

Sampling DPPs
• Goal: For each user, draw a size-k sample from their DPP
• Problem: Existing algorithms for k-DPP sampling are too expensive

• D << N by construction or random projection
• O(ND2) preprocessing on L = BTB
• O(Nk2 + D3) per personalized (W-weighted) sample afterwards

• Our contribution: Making repeated, personalized k-DPP sampling efficient:
• O(ND2) preprocessing on L = BTB
• O(D2k2 log N + D3) per personalized (W-weighted) sample afterwards  

Standard dual algorithm
• Pre-processing: Build dual kernel C = BBT, O(ND2)
• Step 1: Personalize and eigendecompose, O(D3)

• Step 2: Select a set E consisting of k of the eigenvectors, O(Dk); now marginal
probabilities of items are defined as follows:

Our tree-based algorithm
Key idea: In pre-processing, create a balanced binary tree of depth log N.

⇒

Experiments
A Tree-Based Method for Fast Repeated Sampling of DPPs

Personalized Dual Personalized Tree

102 103 104 105 106

Ground set size (N)

10�2

100

P
re
p
ro
ce
ss
in
g
ti
m
e
(s
)

102 103 104 105 106

Ground set size (N)

100

102

M
em

or
y
(M

B
)

(a) D = 10

5 10 15 20 25 30 35

Number of features (D)

0

1

2

P
re
p
ro
ce
ss
in
g
ti
m
e
(s
)

5 10 15 20 25 30 35

Number of features (D)

0

500

1000

M
em

or
y
(M

B
)

(b) N = 105

Figure 1. Time and memory required for preprocessing. Each point is an average over ten samples.

Dual

Tree

Personalized Dual

Personalized Tree

103 104 105 106

Ground set size (N)

10�2

10�1

100

S
a
m
p
li
n
g
ti
m
e
(s
)

(a) D = 10, k = 10

5 10 15 20 25 30 35

Number of features (D)

10�2

100

(b) N = 105, k = 5

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Sampled set size (k)

10�2

10�1

100

(c) N = 105, D = 20

Figure 2. Time required to produce a k-DPP sample. Each point is an average over 10,000 samples.

size k, our sampling scales logarithmically with N , so for
large numbers of items it is several orders of magnitude
faster than DS. This is precisely the setting in which modern
systems usually find themselves. When N is one million,
our sampler returns a personalized result in about 0.01 sec-
onds, versus almost 4 seconds for DS. Secondly, the costs
for the method of personalization that we have proposed are
quite low; the overhead is negligible in most cases.

6.3. Exact vs. approximate sampling

To synthetically evaluate the approximation technique pro-
posed in Section 5, we generate feature matrices B such
that each column bi is drawn from a mixture of multivariate
Gaussians with n components, and we draw personalization
vectors w uniformly at random from [0, 1]D.

When constructing the tree, we use the following simple
splitting heuristic: we use the items i, j that maximize kbi�
bjk1 to initialize the left and right subtrees; all other items
are then greedily added to the left or right tree in order to
minimize their (infinity-norm) distance to the initial item.
This encourages similar nodes to lie in the same subtree,

leading to more uniform distributions. This splitter requires
O(|S|2D) time to compute, and so the tree construction in
this case is O(ND2 +N2D logN).

Figure 3 reports the time required to sample sets of k = 5
elements for various feature lengths and ground set sizes.
We check for approximate sampling between depths 5 and
d � 2 where d is the total depth of the tree. Approximate
sampling is significantly faster under all conditions, and the
gap increases as log(N) if D and k remain constant.

We also investigate the tightness of the upper bound in
Prop. 3. Figure 4 shows the predicted upper bound (blue)
and the true distance to the uniform distribution (red) for
varying ground set sizes; the reported measurements are
averaged over all nodes in the tree for each fixed ground set
size, with D = 10 features and n = 5 components to the
Gaussian mixture generating B. Figure 4 also shows the
spread of the difference between our upper bound and the
true distance to uniform: although it is very loose, the two
values differ by less than 10�6 for certain sizes, showing
that our upper bound is (theoretically) tight.

Preprocessing: Sampling:

A Tree-Based Method for Fast Repeated Sampling of DPPs

Personalized Dual Personalized Tree

102 103 104 105 106

Ground set size (N)

10�2

100

P
re
p
ro
ce
ss
in
g
ti
m
e
(s
)

102 103 104 105 106

Ground set size (N)

100

102

M
em

or
y
(M

B
)

(a) D = 10

5 10 15 20 25 30 35

Number of features (D)

0

1

2

P
re
p
ro
ce
ss
in
g
ti
m
e
(s
)

5 10 15 20 25 30 35

Number of features (D)

0

500

1000

M
em

or
y
(M

B
)

(b) N = 105

Figure 1. Time and memory required for preprocessing. Each point is an average over ten samples.

Dual

Tree

Personalized Dual

Personalized Tree

103 104 105 106

Ground set size (N)

10�2

10�1

100

S
a
m
p
li
n
g
ti
m
e
(s
)

(a) D = 10, k = 10

5 10 15 20 25 30 35

Number of features (D)

10�2

100

(b) N = 105, k = 5

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Sampled set size (k)

10�2

10�1

100

(c) N = 105, D = 20

Figure 2. Time required to produce a k-DPP sample. Each point is an average over 10,000 samples.

size k, our sampling scales logarithmically with N , so for
large numbers of items it is several orders of magnitude
faster than DS. This is precisely the setting in which modern
systems usually find themselves. When N is one million,
our sampler returns a personalized result in about 0.01 sec-
onds, versus almost 4 seconds for DS. Secondly, the costs
for the method of personalization that we have proposed are
quite low; the overhead is negligible in most cases.

6.3. Exact vs. approximate sampling

To synthetically evaluate the approximation technique pro-
posed in Section 5, we generate feature matrices B such
that each column bi is drawn from a mixture of multivariate
Gaussians with n components, and we draw personalization
vectors w uniformly at random from [0, 1]D.

When constructing the tree, we use the following simple
splitting heuristic: we use the items i, j that maximize kbi�
bjk1 to initialize the left and right subtrees; all other items
are then greedily added to the left or right tree in order to
minimize their (infinity-norm) distance to the initial item.
This encourages similar nodes to lie in the same subtree,

leading to more uniform distributions. This splitter requires
O(|S|2D) time to compute, and so the tree construction in
this case is O(ND2 +N2D logN).

Figure 3 reports the time required to sample sets of k = 5
elements for various feature lengths and ground set sizes.
We check for approximate sampling between depths 5 and
d � 2 where d is the total depth of the tree. Approximate
sampling is significantly faster under all conditions, and the
gap increases as log(N) if D and k remain constant.

We also investigate the tightness of the upper bound in
Prop. 3. Figure 4 shows the predicted upper bound (blue)
and the true distance to the uniform distribution (red) for
varying ground set sizes; the reported measurements are
averaged over all nodes in the tree for each fixed ground set
size, with D = 10 features and n = 5 components to the
Gaussian mixture generating B. Figure 4 also shows the
spread of the difference between our upper bound and the
true distance to uniform: although it is very loose, the two
values differ by less than 10�6 for certain sizes, showing
that our upper bound is (theoretically) tight.

A Tree-Based Method for Fast Repeated Sampling of DPPs

Personalized Dual Personalized Tree

102 103 104 105 106

Ground set size (N)

10�2

100

P
re
p
ro
ce
ss
in
g
ti
m
e
(s
)

102 103 104 105 106

Ground set size (N)

100

102

M
em

or
y
(M

B
)

(a) D = 10

5 10 15 20 25 30 35

Number of features (D)

0

1

2

P
re
p
ro
ce
ss
in
g
ti
m
e
(s
)

5 10 15 20 25 30 35

Number of features (D)

0

500

1000

M
em

or
y
(M

B
)

(b) N = 105

Figure 1. Time and memory required for preprocessing. Each point is an average over ten samples.

Dual

Tree

Personalized Dual

Personalized Tree

103 104 105 106

Ground set size (N)

10�2

10�1

100

S
a
m
p
li
n
g
ti
m
e
(s
)

(a) D = 10, k = 10

5 10 15 20 25 30 35

Number of features (D)

10�2

100

(b) N = 105, k = 5

5.0 7.5 10.0 12.5 15.0 17.5 20.0

Sampled set size (k)

10�2

10�1

100

(c) N = 105, D = 20

Figure 2. Time required to produce a k-DPP sample. Each point is an average over 10,000 samples.

size k, our sampling scales logarithmically with N , so for
large numbers of items it is several orders of magnitude
faster than DS. This is precisely the setting in which modern
systems usually find themselves. When N is one million,
our sampler returns a personalized result in about 0.01 sec-
onds, versus almost 4 seconds for DS. Secondly, the costs
for the method of personalization that we have proposed are
quite low; the overhead is negligible in most cases.

6.3. Exact vs. approximate sampling

To synthetically evaluate the approximation technique pro-
posed in Section 5, we generate feature matrices B such
that each column bi is drawn from a mixture of multivariate
Gaussians with n components, and we draw personalization
vectors w uniformly at random from [0, 1]D.

When constructing the tree, we use the following simple
splitting heuristic: we use the items i, j that maximize kbi�
bjk1 to initialize the left and right subtrees; all other items
are then greedily added to the left or right tree in order to
minimize their (infinity-norm) distance to the initial item.
This encourages similar nodes to lie in the same subtree,

leading to more uniform distributions. This splitter requires
O(|S|2D) time to compute, and so the tree construction in
this case is O(ND2 +N2D logN).

Figure 3 reports the time required to sample sets of k = 5
elements for various feature lengths and ground set sizes.
We check for approximate sampling between depths 5 and
d � 2 where d is the total depth of the tree. Approximate
sampling is significantly faster under all conditions, and the
gap increases as log(N) if D and k remain constant.

We also investigate the tightness of the upper bound in
Prop. 3. Figure 4 shows the predicted upper bound (blue)
and the true distance to the uniform distribution (red) for
varying ground set sizes; the reported measurements are
averaged over all nodes in the tree for each fixed ground set
size, with D = 10 features and n = 5 components to the
Gaussian mixture generating B. Figure 4 also shows the
spread of the difference between our upper bound and the
true distance to uniform: although it is very loose, the two
values differ by less than 10�6 for certain sizes, showing
that our upper bound is (theoretically) tight.

At N = 1 million: standard sampling takes 4 secs; tree-based takes 0.01 secs
Cost: Memory required to store the tree

Approximation
Main idea: If the distribution over items at a tree node is close
to uniform, then don’t bother moving further down the tree.

ϵ

ϵ

⇒

ϵ

ϵ

ϵ

ϵ

A Tree-Based Method for Fast Repeated Sampling of DPPs

Exact Approx.

1000 2000 3000 4000 5000 6000 7000 8000 9000

Ground set size (N)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
u
n
ti
m
e
(s
)

(a) D = 10, k = 5, n = 5

10 20 30 40 50 60 70 80 90 100

Number of features (D)

0

20

40

60

80

100

120

140

R
u
n
ti
m
e
(s
)

(b) N = 5000, k = 5, n = 5

Figure 3. Comparison of exact and approximate personalized tree-based DPP sampling (✏ = 0.1).

max
i

|p(i | S, Y)� q(i | S, Y)|
1/|S|

Upper Bound

100 200 300 400 500 600 700 800 900 1000

Ground set size (N)

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

101

U
p
p
er

b
ou

n
d
lo
os
en

es
s

(a) D = 10, n = 5, Y = ;

100 200 300 400 500 600 700 800 900 1000

Ground set size (N)

10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

U
p
p
er

b
ou

n
d
lo
os
en

es
s

(b) D = 10, n = 5, |Y | = 4

Figure 4. Comparison of the upper bound (Prop. 3) and the true distance to uniform. The shaded grey area represents the minimum and
maximum gap between the two lines.

6.4. Movie recommendation

As a practical demonstration of the proposed techniques, we
build a realistic movie recommender system based on the
MovieLens dataset (Harper & Konstan, 2016), which con-
tains over 20M user ratings for over 25k movies. To obtain
a feature vector for each movie suitable for constructing a
DPP kernel, we apply nonnegative matrix factorization to
decompose the rating matrix into factors of rank 30. Details
are omitted due to space constraints, but our factorization
achieves an RMSE of 0.88 on held out test data, which
is roughly comparable to existing results in the literature
(Williamson & Ghahramani, 2008; Sedhain et al., 2015).

We use the resulting movie factor matrix as B (N = 26744,
D = 30) to define the DPP kernel, and the corresponding
user factor matrix as a source of realistic weights for person-
alization, uniformly sampling rows to simulate the arrival of
random users at our recommendation engine. Table 1 shows
that, as before, our sampler dramatically outperforms DS.

Of course, as noted above, the time required to compute
exact samples does not depend on the data itself, so perhaps
the more interesting aspect here is the effect of the uniform
approximation. On a random subset of 5000 movies, using
a threshold of ✏ = 0.4, approximate sampling is on average
1.5 times faster than exact sampling with personalization.

Sampler Time per sample
DUAL 42.2 ms
TREE 3.2 ms
PERSONALIZED DUAL 52.2 ms
PERSONALIZED TREE 5.8 ms

Table 1. Time to sample a set of movie recomendations, averaged
over 10,000 samples.

This suggests that the gains illustrated synthetically in Fig-
ure 3, which depend on pockets of similar items that can
safely be grouped together during inference, translate to
realistic data as well.

7. Conclusion
Our tree-based sampling algorithm can be used to generate
DPP samples in sublinear time after an initial pre-processing
phase. This includes personalized samples that depend on
user preferences. Our algorithm dramatically outperforms
existing sampling algorithms for large item sets, making
large-scale DPP systems practical. The unique tree structure
we use also enables approximations that reduce the com-
putational costs even further, and we suspect that further
optimizations may be possible.

