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Focus: Long queries (5+ words)

PRIOR WORK

Non-parsing approaches (e.g. [1]):
Fail to exploit long-range dependencies.

query: otter opens clam with rock

2nd order 
HMM

Intended meaning: 
“rock” = “tool used 

by predator”

Inferred meaning: 
“rock” = “pearl”, 

because of its close 
proximity to “clam”

query: electrical fire causes precautions safety

Syntactic parsing approaches (e.g. [2]):
Fail to exploit meaningful dependencies.

Issue #1: Queries lacking verbs, prepositions, 
punctuation, etc. are incorrectly parsed.

Issue #2: Even correct parses fail to link terms whose 
interaction is meaningful for query disambiguation.

query: otter opens clam with rock

Ex: “electrical” should 
have parent “fire”

Ex: “rock” needs a more 
direct link with “otter”

Our main contribution:
Principled method for learning a parser based 

on information retrieval (IR) supervision.
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N-gram-based parsing approaches (e.g. [3]):
Parses linking frequently co-occurring words are better,

but don’t exploit the available direct supervision.

query: otter opens clam with rock
scores titles of (possibly) relevant documents

4 Sea otter breaks open mollusk against a rock
3 Wild otters and their use of rocks as tools
2 Facts about the giant otter of the Amazon river
1 Clams camouflaged on a rocky river bottom
0 You otter investigate this really great website

Supervision: Human-annotated relevance scores 
(between 0 and 4) for many document-query pairs.

MEASURING SUCCESS IN IR

NDCG is non-smooth, so we follow recent work [4] in 
defining a related but smooth objective to optimize.

PARSING MODEL

otter opens clam with rock
w1         w2      w3       w4     w5

✓ = parser parameters

Goal: Use IR supervision to learn that maximize NDCG.✓
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= relevance of the ith document to the query
      = normalization constant s.t. NDCG@L = 1 for a 

perfect ranking of the top L documents

The higher a relevant document appears on a list of 
search results for a given query, the larger the NDCG.

TREE EDIT DISTANCE RANKER

There are many ways to use the dependencies of a query parse 
to rank documents.  In this work, we use tree edit distance (TED).

q: otter opens clam with rock

d: Sea otter breaks open mollusk against a rock

Example costs:
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f(q,d) = substitution + deletion + insertion
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SMOOTH NDCG-BASED OBJECTIVE

The logistic loss for query k on documents h and s, 
where h is more relevant than s, is:
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Ck,h,sFull objective:

s.t. the ✓ are in the probability simplex

Optimization: Gradient descent on the Lagrangian dual.

Note that for additional correlation with NDCG, as in [5], 
gradients are scaled by the NDCG gain of swapping documents:
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Iteration 

Learning Curves: LambdaRank Objective 

Before step

After step

Query 
length

# of 
queries

ML 
trained

Our 
method

Absolute 
improvement

5 211 32.16 32.27 0.11
6 92 30.05 30.33 0.28
7 51 27.69 28.20 0.51†

≥ 8 56 24.52 25.18 0.66†

Superscript † indicates statistical significance (p < 0.05).

RESULTS FOR NDCG@10

TRAINING ALGORITHM

1 Initialize ✓ randomly

2 while objective gradient is significant do

3 Parse each w 2 Q [D: argmaxTw p✓(Tw)

4 foreach q 2 Q, d 2 Dq
do

5 Compute tree edit distance f(q, d)
6 end

7 Update ✓ according to �-scaled gradients

8 end

TRAINING IN PRACTICE

Figure: Objective value just before updating the parameters 
(before line 7 in the above algorithm) and after updating.

Despite the non-convexity introduced by line 3 in the above 
algorithm, in practice optimization quickly converges.

Baseline (ML): instead of directly optimizing NDCG, the 
baseline uses the Viterbi Expectation-Maximization 

algorithm to maximize the likelihood of the parse trees.
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