Graph-Based Posterior Regularization for Semi-Supervised Structured Prediction \%Penn

```
GRAPH-BASED LEARN|NG
Labels: verb (V), noun (N), etc.
they run over
```


Minimize Laplacian-based objective,
summing over all neighbors of unlabeled nodes:

$$
\operatorname{Lap}(q)=\sum_{a=1}^{N} \sum_{b=L+1}^{N} w_{a b}\left\|\mathbf{q}_{a}-\mathbf{q}_{b}\right\|_{2}^{2}
$$

STRUCTURED PREDICTION $\mathrm{x}=$ The soldiers of the ninth run for cover CRF

$p_{\theta}(\mathbf{y} \mid \mathbf{x})=\frac{1}{Z_{\theta}(\mathbf{x})} \exp \left[\sum_{t=1}^{T} \theta^{\top} \mathbf{f}\left(y_{t}, y_{t-1}, \mathrm{x}\right)\right]$
Minimize negative log-likelihood, summing over all labeled sentences:
$\operatorname{NLik}\left(p_{\theta}\right)=-\sum_{i=1}^{\ell} \log p_{\theta}\left(\mathbf{y}^{i} \mid \mathbf{x}^{i}\right)$
COMBINATION
Most closely related work: Subramanya et al. (EMNLP 2010) Iterative procedure, marginals of CRF initialize graph-propagation (GP) then GP results provide additional training data for CRF learning.
$\operatorname{Lap}(q)$ graph-propagation CRF estimation $\operatorname{NLik}\left(p_{\theta}\right)$

This work: retains efficiency of Subramanya et al (EMNLP 2010) while optimizing an extendible, joint objective.

JOINT OBJECTIVE
2-0.0.
$\mathcal{J}\left(q, p_{\theta}\right)=\operatorname{Lap}(q)+\operatorname{NLik}\left(p_{\theta}\right)+\operatorname{KL}\left(q \| p_{\theta}\right)$ Couple the methods via KL divergence
$(\# \operatorname{tags})^{8}$ values, compactly represented by θ in the case of p

\overbrace{q}	p_{θ}
$7 \mathrm{e}-5$	$2 \mathrm{e}-5$
$3 \mathrm{e}-6$	$8 \mathrm{e}-6$

The soldiers of the ninth run for cover

$3 e-6$	$2 e-5$	\mathbf{N}							
$8 \mathrm{e}-6$	\mathbf{N}	\mathbf{V}							

OPTIMIZATION
$p_{\text {'s parameterization makes its update simple: }}$
θ update: $\theta^{\prime}=\theta-\eta \frac{\partial \mathcal{J}\left(q, p_{\theta}\right)}{\partial \theta}$

EXPONENTIATED GRADIENT

Alternative type of gradient update makes "projection" efficient:
$q_{\mathbf{y}}^{i \prime}=\frac{1}{Z_{q}\left(\mathbf{x}^{i}\right)} q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}\left(q, p_{\theta}\right)}{\partial q_{\mathbf{y}}^{i}}\right]$
$\exp \left[-\eta \frac{\partial \mathcal{J}\left(q, p_{\theta}\right)}{\partial q_{\mathrm{y}}^{i}}\right]=$
$\exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}\left(m_{\mathbf{y}}^{i}\right)}{\partial m_{t, y_{t}, y_{t-1}}^{i}}+\eta\left(\log p_{\theta}\left(\mathbf{y} \mid \mathbf{x}^{i}\right)-\log q_{\mathbf{y}}^{i}-1\right)\right]$
$=\frac{\exp \left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}\left(m_{\mathbf{y}}^{i}\right)}{\partial m_{t, y_{t}, y_{t-1}}^{i}}\right]}{\downarrow} p_{\theta}\left(\mathbf{y} \mid \mathbf{x}^{i}\right)^{\eta}\left(q_{\mathbf{y}}^{i}\right)^{-\eta} e$
$\operatorname{proj}_{\Delta} \longrightarrow Z_{q}\left(\mathrm{x}^{i}\right)$, computable via forward-backward

EXTENSION

$\operatorname{Lap}(q) \longrightarrow$ any convex, differentiable $g(m)$
Theorem: The EM-like optimization procedure below
converges to a local optimum of the joint objective
M-step: $\quad \theta^{\prime}=\theta-\eta \frac{\partial \mathcal{J}\left(q, p_{\theta}\right)}{\partial \theta}$
E-step: $\quad q_{\mathbf{y}}^{i \prime}=\frac{1}{Z_{q}\left(\times^{i}\right)} q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}\left(q, p_{\theta}\right)}{\partial q_{\mathbf{y}}^{i}}\right]$
EXPERIMENTS
Part-of-speech tagging

Handwriting recognition

	GP	GP \rightarrow CRF	CRF	J
Mean	17.57	15.07	9.82	4.89
StdDev	0.30	0.35	0.48	$\mathbf{0 . 4 2}$

