Practical Diversified Recommendations on YouTube with
Determinantal Point Processes

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, Jennifer Gillenwater
Google Inc.
{wilhelm,ajith,bonomo,sagarj,edchi,jengil@google.com

ABSTRACT

Many recommendation systems produce result sets with large num-
bers of highly similar items. Diversifying these results is often
accomplished with heuristics, which are impoverished models of
users’ desire for diversity. However, integrating more complex sta-
tistical models of diversity into large-scale, mature systems is chal-
lenging. Without a good match between the model’s definition of
diversity and users’ perception of diversity, the model can easily
degrade users’ perception of the recommendations. In this work
we present a statistical model of diversity based on determinantal
point processes (DPPs). We train this model from examples of user
preferences with a simple procedure that can be integrated into
large and complex production systems relatively easily. We use
an approximate inference algorithm to serve the model at scale,
and empirical results on live YouTube homepage traffic show that
this model, coupled with a re-ranking algorithm, yields substantial
short- and long-term increases in user satisfaction.

ACM Reference Format:

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H.
Chi, Jennifer Gillenwater. 2018. Practical Diversified Recommendations on
YouTube with Determinantal Point Processes. In Proceedings of International
Conference on Information and Knowledge Management (CIKM’18). ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Online recommendation services often present content in the form
of a feed—an ordered list of items through which the user browses.
Examples include the YouTube mobile homepage feed and the Face-
book news feed. The goal is to select and order a set of k items such
that the utility of the set is maximized. Often times recommenders
do this by ranking based on item quality—assigning each item i
a pointwise quality score, g;, and sorting by this score. However,
this is sub-optimal as the pointwise estimator ignores correlations
between the items. For example, given that a basketball video has
already been shown on the page, it may now be less useful to show
another basketball video. This is exacerbated by the fact that similar
videos tend to have similar quality scores. Unfortunately, even if we
build a good set-wise estimator, scoring every possible permutation
of the ranked list is prohibitively expensive.

In this paper, we apply a particular machine learning model
called a determinantal point process (DPP) [4, 13, 22], which is a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CIKM’18, October 2018, Turin, Italy

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxX-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

probabilistic model of repulsion that can be used to diversify sets of
recommended items (e.g., lists of videos, books, or search results)
[7, 14, 20, 21]. One key aspect of a DPP is that it can efficiently score
an entire list of items rather than scoring each item individually,
allowing us to better take into account item correlations.

Implementing a DPP-based solution in a mature recommenda-
tion system is non-trivial. First, the training methods for DPPs
are significantly different from those used in typical recommender
systems [3, 12, 14, 20, 21, 26, 27]. Second, integrating the DPP op-
timization with existing recommenders is complex. One option
would be to retool the entire infrastructure in terms of set-wise
recommendations, but that would discard the large investment in,
and the sophistication of, the existing pointwise estimators. Instead,
we use DPPs on top of existing infrastructure as a last-layer model.
This allows the various underlying system components to evolve
independently. More specifically, for a large-scale recommendation
system, we build a DPP using two inputs: 1) pointwise estimators
from a deep neural network built for recommendations [9], which
gives us a high-precision estimate of item quality g;, and 2) pair-
wise item distances D;; computed in a sparse semantic embedding
space. (e.g., [19]). From these inputs, we construct a DPP and apply
it to the top n items in a feed. Our approach has the advantage of
enabling teams of researchers to continue to develop the g; and
Djj estimators simultaneously with our development of a set-wise
scoring system. We can therefore achieve our diversification goals
while leveraging existing investments in a large-scale prediction
system. Empirical results on YouTube show substantial short- and
long-term increases in user satisfaction.

Our contributions are:

(1) We offer a simple and effective procedure for set-wise rec-
ommendations by leveraging DPPs. We define a parameter-
ization and learning algorithm for DPPs that makes use of
pointwise quality scores for items and pairwise distances
between items.

(2) We describe a practical and modular approach which can
be applied in the context of latency-sensitive, large-scale
recommender systems.

(3) We offer both offline and online empirical results verifying
that our approach improves recommendation accuracy on
top of a mature, large-scale recommender system.

The paper is organized as follows. We start with related works
in §2. We describe the diversification needs in the current recom-
mendation system in §3, defining basic terminology in §3.2. In §4,
we briefly review DPPs, then describe our current choice of DPP
kernel, work-in-progress on a more complex kernel, and a rank-
ing algorithm that makes use of these kernels. Finally, we provide
a summary of our online experimental results in §5 and end by
offering a few concluding remarks in §6.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CIKM’18, October 2018, Turin, Italy

2 RELATED WORK

Current recommender research is generally focused on improving
the pointwise estimate g;—a prediction of how much a user will
enjoy one particular item. This line of research was initially started
over 20 years ago with user-based collaborative filtering [34] and
item-based collaborative filtering [36], and then refined using ma-
trix factorization techniques [19]. In our system, we now obtain
these pointwise estimates from deep neural networks, in which a
user’s preference features are combined with the the item features
to estimate how much the user will enjoy that content [9].

During the course of these refinements, there was also significant
study of users’ need for novelty and diversity in the recommen-
dation results [16, 24, 29, 39, 41, 43, 45]. Similarly, there has been
significant work on diversification in information retrieval systems
such as web search [6, 8, 10, 11, 15, 33, 35, 40, 42]. Considering all
of this literature, researchers have proposed many notions of diver-
sification. Here we briefly summarize and contrast two different
perspectives on the purpose of content diversification.

2.1 Diversification to Facilitate Exploration

First, diversification is sometimes seen as a way to facilitate explo-
ration; showing the user more diverse content will (A) help them
discover new topics of interest or (B) help the recommender system
discover more about the user.

For discovering user intent, there is a thread of work in infor-
mation retrieval on using taxonomy to resolve ambiguity in user
intent [2, 35]. For instance, IA-Select in [2] uses a taxonomy to cover
an ambiguous query, and then aims to maximize the probability
that the user will select at least one returned result. Santos et al. [35]
estimate how well a ranked result covers an uncovered aspect of the
answer for an ambiguous query. Whereas these methods require a
problem-specific taxonomy, the solution we present only requires
uncalibrated item distances (the calibration is learned as part of the
training procedure).

For facilitating topic discovery, if a topic contains multiple as-
pects, then one can further divide the topic into subtopics, and
then make sure that each subtopic is well-covered by the results
retrieved [10, 40, 42]. For instance, Dang et al. [10] proposes to
return a result list that has per-topic coverage that is proportional
to that topic’s popularity. As another example, Perez et al. [32]
uses categories of businesses to ensure recommendation results
for a local business recommendation problem has sufficient topical
coverage. In [23], Kwon and Adomavicius argue that users essen-
tially want a multi-criteria rating system, in which they can specify
which aspects of the recommendation they want. In contrast to
these methods, we are able to learn the appropriate amount of
coverage based directly on user behavior.

Perhaps it is worth noting that while exploration likely does
happen to some extent in all recommenders, imperfect information
about user preferences and correlated recommendations are fun-
damentally orthogonal problems. Exploration is still needed in the
presence of uncorrelated recommendations, and diversification is
still needed in the presence of perfect information.

Somewhat consistent with the exploration perspective on diver-
sity is that it is a secondary product objective. This perspective
suggests a fundamental trade-off between diversity and utility, and

Mark Wilhelm, Ajith Ramanathan, Alex Bonomo, et al.

can be seen in work that focuses on increasing a diversity metric as
much as possible, without hurting the utility too much. In recent
work that is similar to ours, Chen et al. [7] described the use of
DPPs to optimize exploration without hurting the user utility. Their
DPP kernel parameterization is different, and our work offers not
just offline experiments but also a large-scale online experiment.
More importantly, in contrast, we optimize for user utility while
increasing diversity using DPP.

2.2 Diversification in Service of Utility

A different perspective on diversity, and the one we adopt for this
work, is that diversity operates directly in service of utility—by ap-
propriately diversifying impressions, one can maximize the feed’s
utility. From this perspective diversity is purely about the corre-
lation of interactions, and increasing diversity means replacing
redundant video impressions with alternatives that a user is more
likely to concurrently enjoy. These new videos generally have lower
individual scores but lead to a better page overall.

Concisely, one way of achieving diversity is avoiding redundancy,
which is particularly important for recommender systems [5, 30,
32, 43, 45]. For instance, in their seminal work in 2005, Ziegler et
al. [45] minimize the similarity between recommended items using
a greedy algorithm with a taxonomy of books. The output is then
merged with a non-diversified result list using a diversification
factor. In another seminal work in information retrieval, Carbonell
and Goldstein [5] propose the maximal marginal relevance (MMR)
method. This method involves iteratively selecting one item at a
time. The score of an item under consideration is proportional to
its relevance minus a penalty term that measures its similarity to
previously selected items. Other explicit notions of redundancy are
studied in [32], which uses a decay function on pairwise similarities.
More recently, Nassif et al. [30] describe an approach using sub-
modular optimization to diversify music recommendation. Lin and
Bilmes [25] describe a way to use submodular functions to perform
document summarization, a task with similar coverage goals as set
diversification tasks. Tschiatschek et al. [38] describe an approach
using submodular maximization to select sequences of items, while
Teo et al. [37] describe using submodular diversification to re-rank
top items based on category. Our goals are quite similar in nature,
but use a different optimization technique. Additionally we do not
take item diversity as an a priori goal; our aim is simply trying to
increase the number of positive user interactions by making diver-
sity information available to the overall recommendation system.
One can imagine iterating on the model presented here to express a
personalized notion of diversity. The recommended content feed is
also a convenient context for this approach, since (unlike in search)
users are typically not looking for a specific item and may interact
with multiple items in the course of a session.

The notion of redundancy can be further broken up into two
separate relevance notions: substitutes and complements. These
notions have been employed by several recommender systems [28,
44]. In e-commerce recommendation applications, before the user
makes a purchasing decision, it might be more helpful to offer
substitutes of candidates under consideration, while complement
products might be offered after the user has made a purchase.

Practical Diversified Recommendations on YouTube with Determinantal Point Processes

2.3 Related Works Summary & Design Choices

In summary, many researchers before us have studied how to im-
prove diversity in both recommendation and search results. Some
researchers deal with several of these diversity notions at the same
time. For instance, Vargas et al. [39] addresses coverage and re-
dundancy, as well as the size of the recommendation list. We are
interested in a technique that works well in practice in a large-scale
recommendation system that can be served to hundreds of millions
of users per day. The notion of diversity should be flexible enough
that it can evolve over time. As a result, we chose not to pursue
taxonomic or topic-coverage approaches, as they require some ex-
plicit representation of diversity (e.g., an explicit guess at the user’s
intent or topic coverage).

Instead, we propose an approach using determinantal point pro-
cesses (DPPs) [4, 7, 13, 22]. DPP is a set-wise recommendation model
that only requires two explicit and natural elements: how good is
each item for the user, and how similar are each pair of items. As a
result, our focus is on eliminating redundancy.

3 BACKGROUND

3.1 YouTube Homepage Feed Overview and the
Need for Diversification

The overall structure of the system for generating the video recom-
mendations on a user’s YouTube mobile homepage feed is illustrated
in Figure 1. The system is comprised of three phases: (1) candidate
generation, wherein the feed items are selected from a large cat-
alogue, (2) ranking, which orders the feed items, and (3) policy,
which enforces business needs such as requiring that some content
appear at a specific position on the page. Phases (1) and (2) both
make heavy use of deep neural networks [9].

User features

]

Candidate | .| Pointwise video
videos scorer

f

Video features

1 Policy layer [— User

Figure 1: The basic serving scheme.

Candidate generation is substantially influenced by the previous
behavior of the user on our system, and computes relatively simple
measures of how well items match user preferences. For example,
co-utility is one measure that is used: if a user enjoyed video A,
and many other users who enjoyed A also enjoyed B, then B might
be selected in the candidate generation phase. The ranking phase
also makes heavy use of user features, but additionally relies on
richer item features (such as embeddings of the video in some
semantic space). As one might expect, the ranking phase tends to
give similar videos similar utility predictions, leading to feeds that
have repetitive content and, often, runs of very similar videos.

In order to mitigate the redundancy problem, at first, we intro-
duced heuristics in the spirit of [32, 45] to the policy layer, such
as a requirement that an individual uploader can contribute no
more than n items to any user’s feed. While this rule is somewhat

CIKM’18, October 2018, Turin, Italy

effective, our experience is that it interacts quite poorly with the
underlying recommendation system. Since the candidate genera-
tion and ranking layers are unaware of this heuristic, they make
suboptimal predictions by wasting space on items that will never be
presented. Furthermore, as the first two layers evolve over time, we
need to repeatedly retune the parameters of the heuristics—a task
that is expensive and hence in practice is not done with enough
frequency to maintain much of the rule’s effectiveness. Finally, the
interactions between multiple types of heuristics yields, in practice,
a recommendation algorithm that is very hard to understand. The
result is a system that is suboptimal and difficult to evolve.

3.2 Definitions

To be more precise, let us denote the observed interactions of a
user with items in a given feed as a binary vector y, (e.g., y =
[0,1,0,1,1,0,0,...]), where it is understood that the user typically
will not look at the entire feed, but will start at the lower num-
bered indices. Our present goal is to maximize the total number of

interactions:
G'= > D vu (1)

u~Users i~Items
In order to train models from records of previous interactions, we
try to select the parameters of the model to maximize the cumulative
gain by reranking the feed items:
P @)
J

6= ¥

u~Users i~Items

where j is the new rank that the model assigns to an item. This
quantity increases as we rank interactions more highly. (In practice,
we minimize ji,; instead of maximizing 2%, but the two expres-
sions have the same optima.) In the following discussion, we will
drop the u subscript for simplicity, although all values should be
assumed to differ on a per-user basis

Let us further assume we are provided with some black box
estimates of y’s quality:

qi = P(y; = 1| features of item i) . (3)

The obvious ranking policy is to sort the items according to q.
Note though that g; is a function of only a single item. If there are
many similar items with similar values of g; they will be ranked
adjacent to each other, which may lead to the user abandoning the
feed. Given that our ultimate goal is to maximize the feed’s total
utility, we call two items similar when:

P(yi = Lyj = 1) <P(yi = DP(y; = 1) .)

In other words, they are negatively correlated when presented

together—suggesting one of them is redundant. If there are similar

items in the feed, then sorting by ¢ is no longer the optimal policy.

Let us further assume we are provided with black box item
distances:

Dj;j = distance(item i, item j) € [0, c0) . (5)

These distances are assumed to be ‘uncalibrated’, in the sense
that they are not required to be directly related to Equation 4. For
example, if the items in question are newspaper articles, D could
be a Jaccard distance of the tokenized words in each article. The
goal now is to produce a ranking policy based on ¢, D, and y which
achieves a smaller value of G than simply sorting by q. Ideally

CIKM’18, October 2018, Turin, Italy

User features

‘ Embeddings ‘

]

‘ Ca|_1d|date }— [P vty H DPP Optimizer }—“ Policy layer H User ‘
videos scorer

Figure 2: The new serving scheme.

this can be done in a way which integrates and evolves well with
existing infrastructure.

3.3 Design Desiderata

If item similarity (as defined in Equation 4) exists in the dataset, and
the dataset is sufficiently large, then our goal can likely be achieved
by a wide variety of different methods. We favor a method which:

(1) fits well into the existing logical framework of building
machine-learned estimators of observable physical events,

(2) can gracefully scale in complexity over time, and

(3) can be applied without requiring huge changes to existing
systems and expertise.

Heuristics can be effective [45] but are not ideal. For example,
imagine enforcing the rule that within a window of n adjacent
items, no two items may have D;j; < 7. A number of issues arise:

(1) This rule operates independently of g, meaning that it will
demote high-scoring items under the same conditions as it
does low-scoring items. Independent improvements to the
accuracy of g may be lost after applying the policy.

(2) Parameters n and 7 can be found by brute force grid search,
but adding complexity will become prohibitive, as training
time will be exponential in the number of parameters.

(3) It is not entirely obvious how to extend the rule to make
incremental improvements over time, beyond somehow in-
corporating q.

(4) It cannot be used as a generative model to create synthetic
datasets for offline validation.

An important point is that this heuristic implicitly treats the
redundancy problem as a fundamentally different objective from
maximizing utility. In fact, it suggests the hypothesis that improving
diversity might reduce utility (at least in the short term), since
it throws away items that have high g values. In contrast, our
proposed approach considers utility on pairs of items (via the anti-
correlation described in Equation 4), and hence is able to use utility
itself to better justify demoting certain items.

Of course, it is possible to define a heuristic based upon anti-

correlation, such as “no two items are allowed in the same feed if
P(yi=1,yj=l)

P(y;=1)P(y;=1)

does not account for g, would require frequent re-tuning of the

parameter x, and even with regular tuning is not flexible enough
to capture exactly the behavior that we desire. Hence, in place of
such heuristic rules, we introduce DPPs into the system as a more
principled way of diversifying recommendations.

We insert the DPPs before the policy layer, but after the point-
wise scoring layer (see Figure 2). This allows us to leverage the
investment in an extremely sophisticated pointwise scorer, and also
ensures that business policies are respected.

is below x”. However, as mentioned above, this rule

Mark Wilhelm, Ajith Ramanathan, Alex Bonomo, et al.

4 METHOD
4.1 DPP Overview

We start with a high-level overview of determinantal point pro-
cesses (DPPs). A point process £ onaset S = {1,2,...,N} (e.g.,
a set of N videos in a user’s YouTube mobile homepage feed) is
a probability distribution on the powerset of S (the set of all sub-
sets of S). That is, VS C S, P assigns some probability £(S), and
2.scs P(S) = 1. DPPs represent a family of probability distribu-
tions whose parameters can be tuned such that the probability of a
subset, P(S), is proportional to a combined measure of the quality
of the items in S and the diversity of these items. Thus, finding
the set maxg.|s|=x P(S) is one way of selecting a high-quality and
diverse subset of k items from a larger pool of N items.

As mentioned in Section 2, there are many reasonable measures
that take into account both item quality and diversity, such as the
maximal marginal relevance (MMR) approach [5]. The advantage
of using DPPs is two-fold: 1) DPPs can out-perform measures such
as MMR on recommendation tasks [20], and 2) a DPP is a proba-
bilistic model. This latter point means that we can take advantage
of algorithms for probabilistic operations like marginalization, con-
ditioning, and sampling. The availability of these operations aligns
well with our goal of building a system that can gracefully scale in
complexity over time.

We now describe how we use a DPP to model user behavior.
Recall that for a feed with N items, the length-N binary vector y
indicates which videos from the feed the user interacted with. Let
Y denote the index set of these items (e.g., for y = [0, 1,0,0, 1, 1]
we have Y = {2,5, 6}). Then we assume that a user u’s behavior is
modeled by a DPP with probability distribution # in the following
manner: Y ~ P,. That is, the set of videos interacted with, Y,
represents a draw from the probability distribution defined by a
user-specific DPP.

Even though a DPP defines a probability distribution over an
exponential number of sets (all 2V subsets of S = {1,2,...,N}), it
can be compactly parameterized by a single N X N positive semi-
definite kernel matrix [4], which we will call L. More concretely, the
probabilities of a DPP can be written as determinants of submatrices
of L:
det(Ly)

Yyrcs det(Lyr)

where Ly is L restricted to only those rows and columns which are
indexed by Y (e.g., for Y = {2,5, 6}, the matrix Ly is size 3 X 3).
Note that the denominator in Equation 6 is simply a normalizing
term, and, due to various properties of determinants, it can actually
be written and computed efficiently as a single determinant:

P(Y) = ©)

Z det(Ly) = det(L +I))

YcS

where I is the identity matrix.

To see how det(Ly) can define a balanced measure of the quality
and diversity of a set of items, it helps to think of the entries of L
in the following manner: 1) a diagonal entry L;; is a measurement
of the quality of an item i, and 2) an off-diagonal element L;; is a
scaled measurement of the similarity between items i and j. With
these intuitions, let’s consider a case where |Y| = 2. If Y = {1, 2},

Practical Diversified Recommendations on YouTube with Determinantal Point Processes

then:

L1 L2
Ly = . 8
Y [L21 Lzz] ®

The determinant of this submatrix is: det(Ly) = L11L22 — L12Lo3.
So, it is a product of item qualities minus scaled item similarities.
The expression for determinant is more complex for larger subma-
trices, but a similar intuition holds there as well.

In the following sections, we discuss various ways in which L
can be constructed from the readily available system inputs, such
as the pointwise item quality scores, g, that Section 3.2 described.

4.2 Kernel Parameterization

In our current deployment, as shown in Figure 2, diversification
happens fairly late in the pipeline, so a typical input set size is N =
100. For each of these N videos, we have two main input features:
a personalized quality score g, and a sparse embedding ¢ which is
derived from the topical content of the video. These features are
generated by completely independent subsystems. By stacking our
diversification system on top of them we take advantage of the
continuous improvements of these subsystems.

For the initial introduction of DPPs into our system, we first
used a relatively simple parameterization of the N X N DPP kernel
matrix L:

Lii=¢; ©

D..
Lij = aqiqj exp (—#) ,fori#j. (10)

Each D;j is a computed from ¢; and ¢;; Section 5 describes the exact
embedding ¢ and distance function that we found worked best in
practice. The a and o are free variables. Note that this formulation
is identical to a standard (Gaussian) radial basis function (RBF)
kernel when « = 1. For smaller values, a € [0, 1), the off-diagonal
of the matrix is scaled down, which essentially corresponds to
considering all items to be more diverse. For larger values, a > 1,
the off-diagonal of the matrix is scaled up, with the opposite effect
of making all items more similar. As a grows, the probability of
small sets grows while the probability of large sets shrinks. Thus,
a large a is a good fit for user behavior in the setting where a
relatively small subset of the videos in a feed are interacted with
(Y] is small).

It is valuable for us to be able to use large a, because, as we will
see in Section 4.3, it provides a better fit to real user data. However,
there is one technical issue with allowing a > 1. Recall from the
Equation 6 that to have a proper DPP, the kernel matrix L must
be positive semi-definite (PSD). The PSD condition ensures that
the determinants of all submatrices of L are non-negative. This
is important because the probability of a set Y is proportional to
det(Ly), and negative “probabilities” do not make sense. If we allow
a > 1 though, this has the potential to make L non-PSD. In practice,
we resolve this issue by simply projecting any non-PSD matrix
that a large « value produces back to the space of PSD matrices.
(The projection is simple: we compute L’s eigendecomposition and
replace any negative eigenvalues with zeros.)

CIKM’18, October 2018, Turin, Italy

4.3 Training Approach

Our training set consists of approximately forty thousand exam-
ples sampled from one day of data collected from the YouTube
mobile homepage feed. Each training example is a single homepage
feed impression: a single instance of a user going to the YouTube
mobile homepage and being presented with an ordered list of rec-
ommended videos. For each such impression we have a record of
which videos a user enjoyed, which constitutes the set Y. We note
that there is a partial-label bias associated with training the model
from such data, since we only observe users’ interactions with the
videos that we chose to present them with in the past, rather than
interactions with videos chosen uniformly at random. Generally,
we use the same style of solutions to this issue as have been used in
the past when training pointwise models, such as using an e-greedy
exploration strategy.

For the basic kernel described in the previous section there are
only two parameters, @ and o, so we can simply do a grid search
to find the values that maximize the cumulative gain (Equation 2).
Figure 3 shows the cumulative gain obtained for various choices of
a and 0. The darker the color, the worse the result. Interestingly,
one can observe the catastrophic cliff in the upper right quadrant,
and the subsequent plateau. This has to do with the DPP kernels
for training examples becoming increasingly non-PSD. Recall that
as a grows the off-diagonal of L grows, increasing the chance of
a non-PSD L. Since the off-diagonal also grows somewhat with
o, large a, 0 combinations result in non-PSD matrices for many
of the training examples. Intuitively then, it might seem like the
entire upper right corner of the plot should have low cumulative
gain values, rather than the low values being concentrated in the
observed band. However, also recall that we project any non-PSD
matrices back to the PSD space. This projection is not linear with
respect to « or ¢ and so the quality of the matrices after projection
cannot be expected to necessarily correlate with our intuition about
those parameters. Overall, we find that the highest cumulative gain
is achieved in the mid-range for ¢ and in the upper half of the range
for a. The L kernels produced by these parameters are mostly PSD,
so only an occasional training example’s kernel requires projection.

4.4 Deep Gramian Kernels

As discussed earlier, one of the main advantages of using DPPs
over heuristics is that DPPs allow us to build a system that scales
gracefully in complexity over time. We argued that the complexity
of a heuristic scales poorly, because to tune it we have to do a
grid search over its parameters, and so the runtime for training a
heuristic is exponential in the number of parameters. In this section,
we discuss how, with DPPs, we can move beyond grid searches to
efficiently train a model with many parameters.

There is a substantial body of work on learning DPP kernel
matrices that are parameterized in a variety of ways [3, 12, 14, 20,
21, 26, 27]. Such work usually seeks to maximize the log-likelihood
of the training data. More concretely, suppose that:

o the parameters of L are some length-r vector w, and

e we have M training examples, each consisting of: 1) a set
of N items, and 2) the subset Y of these items that a user
interacted with.

CIKM’18, October 2018, Turin, Italy

. ‘ DPP CL{muIatlve‘ Gain . . 8000

-44000

- —4000

- —8000

-12000

-16000

—20000

=24000

Figure 3: Cumulative gain for a grid of « and o values on a
dataset from the YouTube mobile homepage feed.

Let L(w) be the N X N kernel matrix induced by the parameters w.
Then the log-likelihood of the training data is:

M
LogLike(w) = Z log(Pr(w)(Y})) (11)

Jj=1

M

[log(det(L(w)yj)) ~ log(det(L(w) + 1))] . (12)

J

1l
—

where Y; is the subset of items from training example j that the user
interacted with. The ability to use log-likelihood as an objective
function allows us to learn DPP parameters with more sophisticated
(and more efficient) methods than grid search.

We have begun to explore learning a kernel with many more
parameters than the @ and o of the previous section, by using
gradient descent on LogLike. We still use as input the ¢ embeddings
that characterize video content. For the personalized video quality
scores though, rather than a scalar score q;, we are able to get from
existing infrastructure an entire vector of quality scores q;, so we
use this vector to make our model more general. (Each entry of the
vector q; captures some aspect of what might make a video a good
choice for a user.) The full kernel L(¢, q) that we learn from this
input data can be expressed in the following manner:

Lij = f(q)9(¢:) " 9(¢))f(q;) + 61i=j . (13)

where f and g are separate stacks in a neural network. (J is simply
a regularization parameter that we have for now fixed at a small
value.) Note that the quantity f(q;) is a scalar, while g(¢;) is a
vector. The neural network for computing f is relatively shallow,
while g’s network is deeper, and effectively re-embeds ¢ in a space
which better describes utility correlation of videos (see Figure 4). We
also note that, unlike the basic kernel parameterization discussed
earlier, where large values of « could result in non-PSD L, this more
complex parameterization is actually guaranteed to always produce
PSD matrices without need for projection. This follows from the

Mark Wilhelm, Ajith Ramanathan, Alex Bonomo, et al.

f(a) g(phi)

II Fully connected
Hash kernel
Quality scores Content embedding

Figure 4: Architecture example for a deep DPP kernel.

Fulli connected

fact that this particular construction of L makes it a Gramian matrix,
and all such matrices are PSD.

To learn all of the parameters of the neural network for com-
puting f and g, we optimize LogLike from Equation 11 using Ten-
sorflow [1]. The resulting deep DPP models have already shown
utility improvements in live experiments (See the Deep DPPs entry
in Table 1). However, these deeper models change the ranking sub-
stantially enough from the un-diversified baseline that secondary
business metrics begin to be significantly impacted, requiring addi-
tional tuning.

4.5 Efficient Ranking Algorithm with DPP

In this section, we describe how we use at serving time the DPP pa-
rameters that were learned as described in Section 4.3 or Section 4.4.
That is, when a user goes to the YouTube mobile homepage, how
does the DPP decide which videos go at the top of their recom-
mendations feed? For any given user, the underlying parts of the
YouTube system infrastructure send to the DPP layer of the system
the personalized quality scores g and video embedding vectors ¢
for a set of N videos. We construct a DPP kernel L from these scores
and embeddings and the learned parameters as described in the
previous section. We then fix some window size k < N, and we ask
the DPP for a high-probability set of k videos. We put these videos
at the top of the feed, then again ask the DPP for a high-probability
set of k videos from the remaining N — k unused videos. These
videos become the next k in the feed. We repeat this process until
we have ordered the entire feed of N videos.

The idea behind constructing sub-windows of the data with
stride size k is that the repulsion between two similar items reduces
as the distance between them in the feed increases. That is, having
video 1 and video 100 be similar is not as detrimental to user en-
joyment as having video 1 and video 2 be similar. In practice, for
ordering a feed where N consists of several hundred videos, we use
sub-windows where k is a dozen or so videos.

When we “ask the DPP for a high-probability set of k videos”,
what we are actually doing is asking for the size-k set Y that has
the highest probability that the user interacts with every one of
those k items.! This corresponds to the following maximization

10ne could consider alternative quantities, like the probability that a user interacts at
least one item in a given subset. We plan to consider such alternative formulations in
future work.

Practical Diversified Recommendations on YouTube with Determinantal Point Processes

Algorithm 1 Rank a video feed via a DPP

Require: o, 0

> DPP parameters
Require: k € N > The size of the windows
Require: g, ¢ > The quality estimates and video embeddings
Require: W « {1,2,...,N} > Indices of the items to rank
Construct D from ¢ > Compute distances from embeddings
L < N X N-matrix > Construct the DPP
fori=1,2,...,Ndo
forj=1,2,...,Ndo
Lij « Ly[gwij)(e 0.9, D)
end for
end for

Rl
while |W| > 0 do
M « GreedyApproxMax(L, min(k, |W|)) » Indices into W

> The final ordering

D«0
forie Mdo
R — R+ WJi] > Get items from the greedy approx
D «— D+ W[i]
end for
W« W\D > Remove the selected items
L« L[W,W] > Restrict L to the W submatrix
end while
return R
problem:
max det(Ly) . (14)
Y:|Y|=k

As shown in [18], this maximization is NP-hard. In practice though,
a standard greedy algorithm for submodular maximization from
[31] seems to work well for approximately solving this problem.
The greedy algorithm starts from Y = 0 (the empty set), then runs k
iterations, adding one video to Y on each iteration. The chosen video
in iteration i is the video v that produces the largest determinant
value when added to the current chosen set:
max det(Lyyy) - (15)
v eremaining videos

Beyond its simplicity, an additional advantage of using this greedy
algorithm is that, if we keep track of the order in which greedy
selects videos, then this gives us a natural order for the videos in
the corresponding size-k window of the user’s feed.

Algorithm 1 summarizes the ranking algorithm described in this
section. As we will see in the subsequent section, this ranking helps
users find the content that they want to consume more easily.

5 EXPERIMENTAL RESULTS

First, we will describe some basic comparison baselines. Before
finally arriving at DPPs, we tried three diversification heuristics:
(1) Fuzzy deduping: disallow any video i whose distance to a
video j already in the feed is below a threshold 7: D;; < 7.
(2) Sliding window: allow at most n out of every m items to be
below a distance threshold 7.
(3) Smooth score penalty: When selecting the video v for posi-
tion n+ 1, re-scale the quality scores to account for similarity

CIKM’18, October 2018, Turin, Italy

Strategy Satisfied homepage watchers
Fuzzy deduping -0.05%
Sliding window -0.26%
Smooth score penalty -0.41%
DPPs +0.63%
Deep DPPs +1.72%

Table 1: Experimental results over approximately 1 week for
various attempts at improving video diversity in users’ feeds.
“Satisfied homepage watchers” refers to a metric that consid-
ers sessions originating from the homepage and counts how
many of these sessions were of significant duration—a no-
tion of homepage utility. Only DPPs improved this metric.

to videos 1 through n that have already been selected:

=b(Po - Pprevious
Anew,v = {original,v * € ($o-dp) (16)
n
. -k-1
with $previous = Z a" Pk 17)
k=0

where ¢ is the quality score we sort by, a and b are free
parameters, and ¢ is the embedding vector.
As seen in Table 1, all of these attempts led to a less useful mobile
homepage feed, as measured by the number of users with long
sessions originating from homepage.

When experimenting with DPPs, we first used the kernel L de-
scribed in Section 4.2, and evaluated a variety of embeddings and dis-
tance functions (dense and sparse audio embeddings, frame embed-
dings, thumbnail image embeddings, document text embeddings,
etc.). We found that it works quite well to use Jaccard distances for
D;;j in Equation 10, applied to sparse vectors ¢ consisting of item
tokens. (For example, the Saturday Night Live video “Olive Gar-
den -SNL” has tokens “snl”, “olive garden”, “saturday night”, “night
live”, and “sketch”, among others.) Live experiments on YouTube’s
mobile homepage recommendations saw dramatic improvements
for our users. In addition to the +0.63% on the satisfied homepage
watchers metric shown in Table 1, we also saw +0.52% in overall
watch time, which is quite a significant jump over the baseline.
Because of this success on mobile, diversification via DPPs has been
deployed on all surfaces, including TV, desktop, and Live streams.
(Note that while the deep Gramian DPPs system looks very promis-
ing on the “satisfied homepage watchers” metric, it has not yet
been deployed. As mentioned earlier, these deeper models change
the ranking substantially enough from the un-diversified baseline
that secondary business metrics begin to be significantly impacted,
requiring additional tuning.)

Interestingly, for some choices of parameters we saw losses in
direct interactions on the homepage, though across the site we had
an overall win. Figure 5 shows the percent increase in view time that
originates from the homepage. This suggests that users find content
sufficiently attractive that it leads to longer sessions starting from
the homepage. And indeed, we did observe increased activity on the
related videos panel (a panel of videos one sees alongside the video
that is currently playing), in terms of click-through rate, number
of views, and amount of total view time, despite the fact that our
original change only affected the videos shown on the homepage

CIKM’18, October 2018, Turin, Italy

25 Increase in watch time originating from the homepage

20+

% increase
>

0.5

0.0f

20 40 60 80 100 120 140
Days since launch

Figure 5: Although diversification did little to increase in-
teractions directly on the homepage, it did increase the to-
tal originating from the homepage (taking the related video
panel into account). Error bars represent 95% confidence in-
tervals.

Homepage watchers

— Same users with diversity
L| - - Different users with diversity

0.8

0.6

0.4

% increase

0.0y

20 40 60 80 100 120 140
Days since launch

Figure 6: Evidence of a long-term “learning effect” as seen in
the number of people watching videos from the homepage.
The implication is a much more useful and satisfying prod-
uct experience.

feed. Cumulatively, it suggests that users find more videos that they
enjoy compared to before.

Moreover, we have been able to observe a long-term “learning
effect” [17] from diversifying users’ feeds. That is, diversification
results in users returning to and enjoying our service more as time
goes on. We measured this effect by running two sets of long-term
holdback experimentsz. In the first holdback condition, users do
not get DPP-diversified feeds, but that subset of the user popula-
tion changes every day (these users are normally exposed to the
diversified feed, except on the rare day that they end up in this
holdback set). In the second holdback condition, a consistent set

2A holdback is simply an A/B experiment where users in group B do not receive the
launched treatment.

Mark Wilhelm, Ajith Ramanathan, Alex Bonomo, et al.

of users do not see DPP-diversified feeds. We can then observe
whether DPP diversification results in a long-term improvement
in user experience by observing the difference between the two
holdbacks when compared to their respective control groups. As
we can see in Figure 6, which shows the increase in number of
users watching at least one video from the homepage against these
two holdback groups, users who have been exposed to diversified
feeds more often realize that they can find videos of interest on
YouTube’s homepage. Therefore, we can say that diversified feeds
lead to increased user satisfaction in the immediate term, and that
this effect becomes even more pronounced over time.

6 CONCLUSIONS AND FUTURE WORK

Researchers realized well over a decade ago that diversification
is an important problem for recommendation systems, and for in-
formation retrieval in general. Significant research efforts have
invested in approaches that use a taxonomic or category-based
approach, often combined with a variety of heuristics. In contrast,
we propose using a method based on determinantal point processes
(DPPs). Our approach performs set-wise optimization of recom-
mendations. Since this approach naturally factors the problem into
one of estimating item quality, and another of estimating repulsive
effects between pairs of items, our stacked architecture allows us
to leverage existing sophisticated investments in pointwise scoring
and item analysis.

In this paper, we discussed the challenges of applying DPPs in a
large-scale video recommendation system. We considered several
parameterizations of the DPP kernel as well as learning methods
for computing the value of the kernel parameters from positive
user interactions with videos. Finally, we presented live experiment
results on this large-scale system, showing both an immediate short-
term lift in user utility, as well as long-term effects—users looked
to YouTube more often to satisfy their needs.

Our work is not without limitations. First, the DPP we trained
is non-personalized in that the parameters such as o are learned
from training on a large population of user data, not on a single
user’s data. In the near future, we hope to develop new approaches
to understand each individual user’s short-term and long-term di-
versification needs. We also do not fully understand how different
domains or genres might affect diversification policy. For instance,
users might prefer music videos to stay within a certain boundary
(no vocals, for instance), as they might be enjoyed somewhat more
passively, while genres like comedy might need more diversity.
Additionally, we do not have a good model that takes time into
account, such as understanding weekday vs. weekend diversity pref-
erences. We would like to explore the connection of diversification
methods with reinforcement learning, so that we can learn a good
control policy for diversification. Given the multitude of directions
for future work, we feel that our current work simply “scratches the
surface” of the possibilities available to improve user experiences by
moving away from pointwise estimators in recommender systems.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Practical Diversified Recommendations on YouTube with Determinantal Point Processes

5
—

G

=

[7

[

[10]

[11]

[12

(13

[14]

(15

[16

[17]

(18

[19

[20]

[21

[22

[23

[24]

[25

[26]

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). http://tensorflow.org/ Software available from tensorflow.org.

Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.
Diversifying Search Results. In Conference on Web Search and Data Mining
(WSDM). http://doi.acm.org/10.1145/1498759.1498766

R. Bardenet and M. Titsias. 2015. Inference for Determinantal Point Processes
Without Spectral Knowledge. In Neural Information Processing Systems (NIPS).
A. Borodin. 2009. Determinantal point processes. ArXiv e-prints (2009). https:
//arxiv.org/abs/0911.1153

Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based
Reranking for Reordering Documents and Producing Summaries. In Conference
on Research and Development in Information Retreival (SIGIR). http://doi.acm.
org/10.1145/290941.291025

Olivier Chapelle, Shihao Ji, Ciya Liao, Emre Velipasaoglu, Larry Lai, and Su-
Lin Wu. 2011. Intent-based Diversification of Web Search Results: Metrics and
Algorithms. Information Retrieval 14, 6 (2011), 572-592. http://dx.doi.org/10.
1007/510791-011-9167-7

Laming Chen, Guoxin Zhang, and Hanning Zhou. 2017. Improving the Diver-
sity of Top-N Recommendation via Determinantal Point Process. In Large Scale
Recommendation Systems Workshop at the Conference on Recommender Systems
(RecSys). http://arxiv.org/abs/1709.05135

Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Biittcher, and Ian MacKinnon. 2008. Novelty and Diversity
in Information Retrieval Evaluation. In Conference on Research and Development
in Information Retreival (SIGIR). http://doi.acm.org/10.1145/1390334.1390446
Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for
YouTube Recommendations. In Conference on Recommender Systems (RecSys).
Van Dang and W. Bruce Croft. 2012. Diversity by Proportionality: An Election-
based Approach to Search Result Diversification. In Conference on Research and
Development in Information Retreival (SIGIR). http://doi.acm.org/10.1145/2348283.
2348296

Marina Drosou and Evaggelia Pitoura. 2010. Search Result Diversification. SIG-
MOD Record 39, 1 (2010), 41-47. http://doi.acm.org/10.1145/1860702.1860709
Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. 2016. Bayesian Low-Rank
Determinantal Point Processes. In Conference on Recommender Systems (RecSys).
J. Gillenwater. 2014. Approximate Inference for Determinantal Point Processes.
Ph.D. Dissertation. University of Pennsylvania.

J. Gillenwater, A. Kulesza, E. Fox, and B. Taskar. 2014. Expectation-Maximization
for Learning Determinantal Point Processes. In Neural Information Processing
Systems (NIPS).

Sreenivas Gollapudi and Aneesh Sharma. 2009. An Axiomatic Approach for
Result Diversification. In Conference on the World Wide Web (WWW). http:
//doi.acm.org/10.1145/1526709.1526761

Yoshinori Hijikata, Takuya Shimizu, and Shogo Nishida. 2009. Discovery-oriented
Collaborative Filtering for Improving User Satisfaction. In Conference on Intelli-
gent User Interfaces (IUI). http://doi.acm.org/10.1145/1502650.1502663

Henning Hohnhold, Deirdre O’Brien, and Diane Tang. 2015. Focus on the Long-
Term: It’s better for Users and Business. In Conference on Knowledge Discovery
and Data Mining (KDD). http://dl.acm.org/citation.cfm?doid=2783258.2788583
Chun-Wa Ko, Jon Lee, and Maurice Queyranne. 1995. An Exact Algorithm
for Maximum Entropy Sampling. Operations Research 43, 4 (1995), 684-691.
http://www.jstor.org/stable/171694

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30-37. http:
//dx.doi.org/10.1109/MC.2009.263

Alex Kulesza and Ben Taskar. 2011. k-DPPs: Fixed-Size Determinantal Point
Processes. In International Conference on Machine Learning (ICML).

Alex Kulesza and Ben Taskar. 2011. Learning Determinantal Point Processes. In
Conference on Uncertainty in Artificial Intelligence (UAI).

Alex Kulesza and Ben Taskar. 2012. Determinantal Point Processes for Machine
Learning. Foundations and Trends in Machine Learning 5, 2-3 (2012), 123-286.
http://dx.doi.org/10.1561/2200000044

YoungOk Kwon and Gediminas Adomavicius. 2007. New Recommendation
Techniques for Multicriteria Rating Systems. IEEE Intelligent Systems 22 (2007),
48-55.

Neal Lathia, Stephen Hailes, Licia Capra, and Xavier Amatriain. 2010. Temporal
Diversity in Recommender Systems. In Conference on Research and Development
in Information Retreival (SIGIR). http://doi.acm.org/10.1145/1835449.1835486
Hui Lin and Jeff Bilmes. 2011. A Class of Submodular Functions for Document
Summarization. In Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies (HLT). http://dl.acm.org/citation.cfm?id=
2002472.2002537

Zelda Mariet and Suvrit Sra. 2015. Fixed-Point Algorithms for Learning Determi-
natal Point Processes. In International Conference on Machine Learning (ICML).

[27]

(28]

[29]

'S
=

w
&,

[33

[34

@
i

[36

[37

[38

@
20,

[40

[41]

[42]

[43

[44

[45

CIKM’18, October 2018, Turin, Italy

Zelda Mariet and Suvrit Sra. 2016. Kronecker Determinantal Point Processes. In
Neural Information Processing Systems (NIPS).

Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring Networks of
Substitutable and Complementary Products. In Conference on Knowledge Discov-
ery and Data Mining (KDD). http://doi.acm.org/10.1145/2783258.2783381

Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being Accurate is
Not Enough: How Accuracy Metrics Have Hurt Recommender Systems. In CHI
Extended Abstracts on Human Factors in Computing Systems. http://doi.acm.org/
10.1145/1125451.1125659

H. Nassif, K.O. Cansizlar, M. Goodman, and SV.N. Vishwanathan. 2016. Diversi-
fying Music Recommendations. In International Conference on Machine Learning
(ICML) Workshop.

G. Nemhauser, L. Wolsey, and M. Fisher. 1978. An Analysis of Approximations for
Maximizing Submodular Set Functions I. Mathematical Programming 14 (1978),
265-294.

Yonathan Perez, Michael Schueppert, Matthew Lawlor, and Shaunak Kishore.
2015. Category-Driven Approach for Local Related Business Recommendations.
In Conference on Information and Knowledge Management (CIKM). 73-82. http:
//dLacm.org/citation.cfm?doid=2806416.2806495

Davood Rafiei, Krishna Bharat, and Anand Shukla. 2010. Diversifying Web Search
Results. In Conference on the World Wide Web (WWW). http://doi.acm.org/10.
1145/1772690.1772770

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. 1994. GroupLens: An Open Architecture for Collaborative Filtering of
Netnews. In Conference on Computer Supported Cooperative Work (CSCW). http:
//doi.acm.org/10.1145/192844.192905

Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting Query
Reformulations for Web Search Result Diversification. In Conference on the World
Wide Web (WWW). http://doi.acm.org/10.1145/1772690.1772780

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
Collaborative Filtering Recommendation Algorithms. In Conference on the World
Wide Web (WWW). http://doi.acm.org/10.1145/371920.372071

Choon Hui Teo, Houssam Nassif, Daniel Hill, Sriram Srinivasan, Mitchell Good-
man, Vijai Mohan, and SV.N. Vishwanathan. 2016. Adaptive, Personalized Di-
versity for Visual Discovery. In Conference on Recommender Systems (RecSys).
http://doi.acm.org/10.1145/2959100.2959171

Sebastian Tschiatschek, Adish Singla, and Andreas Krause. 2017. Selecting Se-
quences of Items via Submodular Maximization. In Conference on Artificial Intel-
ligence (AAAI).

Saul Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. 2014.
Coverage, Redundancy and Size-awareness in Genre Diversity for Recommender
Systems. In Conference on Recommender Systems (RecSys). http://doi.acm.org/10.
1145/2645710.2645743

Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat, and
Sihem Amer Yahia. 2008. Efficient Computation of Diverse Query Results. In
International Conference on Data Engineering (ICDE). http://dx.doi.org/10.1109/
ICDE.2008.4497431

Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. 2009. It Takes Variety
to Make a World: Diversification in Recommender Systems. In Conference on
Extending Database Technology (EDBT). http://doi.acm.org/10.1145/1516360.
1516404

Cheng Xiang Zhai, William W. Cohen, and John Lafferty. 2003. Beyond In-
dependent Relevance: Methods and Evaluation Metrics for Subtopic Retrieval.
In Conference on Research and Development in Information Retreival (SIGIR).
http://doi.acm.org/10.1145/860435.860440

Mi Zhang and Neil Hurley. 2008. Avoiding Monotony: Improving the Diversity
of Recommendation Lists. In Conference on Recommender Systems (RecSys). http:
//doi.acm.org/10.1145/1454008.1454030

Jiaqian Zheng, Xiaoyuan Wu, Junyu Niu, and Alvaro Bolivar. 2009. Substitutes
or Complements: Another Step Forward in Recommendations. In Conference on
Electronic Commerce (EC). http://doi.acm.org/10.1145/1566374.1566394
Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. 2005.
Improving Recommendation Lists Through Topic Diversification. In Conference
on the World Wide Web (WWW). http://doi.acm.org/10.1145/1060745.1060754

http://tensorflow.org/
http://doi.acm.org/10.1145/1498759.1498766
https://arxiv.org/abs/0911.1153
https://arxiv.org/abs/0911.1153
http://doi.acm.org/10.1145/290941.291025
http://doi.acm.org/10.1145/290941.291025
http://dx.doi.org/10.1007/s10791-011-9167-7
http://dx.doi.org/10.1007/s10791-011-9167-7
http://arxiv.org/abs/1709.05135
http://doi.acm.org/10.1145/1390334.1390446
http://doi.acm.org/10.1145/2348283.2348296
http://doi.acm.org/10.1145/2348283.2348296
http://doi.acm.org/10.1145/1860702.1860709
http://doi.acm.org/10.1145/1526709.1526761
http://doi.acm.org/10.1145/1526709.1526761
http://doi.acm.org/10.1145/1502650.1502663
http://dl.acm.org/citation.cfm?doid=2783258.2788583
http://www.jstor.org/stable/171694
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1561/2200000044
http://doi.acm.org/10.1145/1835449.1835486
http://dl.acm.org/citation.cfm?id=2002472.2002537
http://dl.acm.org/citation.cfm?id=2002472.2002537
http://doi.acm.org/10.1145/2783258.2783381
http://doi.acm.org/10.1145/1125451.1125659
http://doi.acm.org/10.1145/1125451.1125659
http://dl.acm.org/citation.cfm?doid=2806416.2806495
http://dl.acm.org/citation.cfm?doid=2806416.2806495
http://doi.acm.org/10.1145/1772690.1772770
http://doi.acm.org/10.1145/1772690.1772770
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/1772690.1772780
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/2959100.2959171
http://doi.acm.org/10.1145/2645710.2645743
http://doi.acm.org/10.1145/2645710.2645743
http://dx.doi.org/10.1109/ICDE.2008.4497431
http://dx.doi.org/10.1109/ICDE.2008.4497431
http://doi.acm.org/10.1145/1516360.1516404
http://doi.acm.org/10.1145/1516360.1516404
http://doi.acm.org/10.1145/860435.860440
http://doi.acm.org/10.1145/1454008.1454030
http://doi.acm.org/10.1145/1454008.1454030
http://doi.acm.org/10.1145/1566374.1566394
http://doi.acm.org/10.1145/1060745.1060754

	Abstract
	1 Introduction
	2 Related work
	2.1 Diversification to Facilitate Exploration
	2.2 Diversification in Service of Utility
	2.3 Related Works Summary & Design Choices

	3 Background
	3.1 YouTube Homepage Feed Overview and the Need for Diversification
	3.2 Definitions
	3.3 Design Desiderata

	4 Method
	4.1 DPP Overview
	4.2 Kernel Parameterization
	4.3 Training Approach
	4.4 Deep Gramian Kernels
	4.5 Efficient Ranking Algorithm with DPP

	5 Experimental Results
	6 Conclusions and Future Work
	References

