
MAP Inference for Customized Determinantal Point Processes
via Maximum Inner Product Search

Insu Han Jennifer Gillenwater
Korea Advanced Institute of Science and Technology1

Daejeon, South Korea
Google Research

New York City, USA

Abstract

Determinantal point processes (DPPs) are a
good fit for modeling diversity in many ma-
chine learning applications. For instance, in
recommender systems, one might have a ba-
sic DPP defined by item features, and a cus-
tomized version of this DPP for each user
with features re-weighted according to user
preferences. While such models perform well,
they are typically applied only to relatively
small datasets, because existing maximum a
posteriori (MAP) approximation algorithms
are expensive. In this work, we propose a new
MAP algorithm: we show that, by performing
a one-time preprocessing step on a basic DPP,
it is possible to run an approximate version
of the standard greedy MAP approximation
algorithm on any customized version of the
DPP in time sublinear in the number of items.
Our key observation is that the core compu-
tation can be written as a maximum inner
product search (MIPS), which allows us to
accelerate inference via approximate MIPS
structures, e.g., trees or hash tables. We pro-
vide a theoretical analysis of the algorithm’s
approximation quality, as well as empirical
results on real-world datasets demonstrating
that it is often orders of magnitude faster
while sacrificing little accuracy.

1 Introduction

Diversification is essential in many machine learning
applications, and determinantal point processes (DPPs)

1Work done during an internship at Google Research.

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

have become a popular means to this end. First intro-
duced to model repulsion in quantum physics (Macchi,
1975), DPPs have since been applied to a variety of
practical machine learning applications. These include:
data summarization (Gillenwater et al., 2012; Chao
et al., 2015; Sharghi et al., 2018), recommender sys-
tems (Chen et al., 2017; Wilhelm et al., 2018; Gartrell
et al., 2019), neural network compression (Mariet and
Sra, 2016), kernel approximation (Li et al., 2016a),
multi-modal output generation (Elfeki et al., 2019),
and batch selection, both for stochastic optimization
(Zhang et al., 2017) and for active learning (Bıyık et al.,
2019). We believe that the ideas from this paper can
be used for many of these, but in this work we use
recommender systems as the motivating application.

Consider the problem of movie recommendation, where
we might have feature vectors describing N movies,
b1, . . . , bN , and a weight vector w describing the types
of movies that a user prefers. Finding the 10 movies
whose feature vectors bi have largest inner product
with w would be one way of selecting movies that
are very relevant to a user’s interests (Koren et al.,
2009). However, these movies would likely not be very
diverse, and there is a large body of work showing that
diversifying items improves user engagement (McNee
et al., 2006; Zhang and Hurley, 2008; Yu et al., 2009;
Vargas et al., 2014). DPPs formalize one way of trading
off the relevance of selected items with their diversity,
and this particular trade-off has been shown to be a
good fit for real-world recommendation systems (Chen
et al., 2017; Wilhelm et al., 2018).

Despite their successes, DPPs have mostly been limited
to use on relatively small datasets, due to the expense
of core inference algorithms. In particular, consider the
problem of selecting from a pool of N items a set of K
items to recommend to a user. Ideally, we would want
to select the set that maximizes the DPP score, also
known as the maximum a posteriori (MAP) inference
task, but this is NP-hard (Ko et al., 1995; Kulesza et al.,
2012). In practice, a set is typically selected by running
the standard greedy algorithm from the submodular

Large-Scale MAP for Customized DPPs via MIPS

maximization literature (Nemhauser et al., 1978). This
algorithm starts from an empty set and runs for K
iterations, each iteration adding the item that most
increases the DPP score. Its runtime is O(KDN), if
each item is represented by a length-D feature vector
(Chen et al., 2018). This runtime makes it feasible for
use only at the end of recommendation pipelines, when
the candidate pool of items has been winnowed down
to a realtively small value, such as N = 5000.

In this work, we propose a variation on the greedy
algorithm that allows it to scale to larger N . In our ex-
periments, the proposed algorithm runs several orders
of magnitude faster than the standard greedy algorithm
on real-world recommendation tasks, while only sacri-
ficing marginal objective value. This makes it possible
to use DPPs earlier in recommendation pipelines, when
the candidate pool is large (or on larger datasets for
other applications). Ensuring diversity at such early
pipeline stages has long been an issue (Cheng et al.,
2016). Improving it would also likely make downstream
DPPs more effective, as they cannot do a good job of
balancing relevance with diversity if their entire input
pool is homogeneous.

Related work. Increasing the dataset size on which
DPP sampling is feasible has been a active topic of
research. MCMC algorithms have been developed
that are capable of sampling in time linear in N
(Anari et al., 2016; Li et al., 2016b). Other recent
works showed that, following a one-time preprocessing
phase, every subsequent sample can be drawn rela-
tively quickly — Derezinski et al. (2019)’s algorithm

requires Õ(K6 + DK4) time, and Gillenwater et al.
(2019)’s requires O(K2D2 logN + D3). However, as
shown empirically in Section 4, these sort of algorithms
have two disadvantages: 1) they tend to be slower than
the greedy MAP approximation algorithm proposed in
this work and, 2) samples tend to be inferior to MAP
approximations in terms of DPP score.

2 Preliminaries

We use 〈·, ·〉 to denote the inner product. For vec-
tors, this is 〈u,v〉 =

∑
i uivi, and for matrices it is

〈L,M〉 =
∑
i

∑
j LijMij . Given a matrix L ∈ RN×N

and A,B ⊆ [N] := {1, 2, . . . , N}, we use LAB ∈
R|A|×|B| to indicate the submatrix formed by taking
rows A and columns B from L. We also use LA as
shorthand for the square matrix LAA, and colon to
indicate all rows or columns: LA: ∈ R|A|×N .

2.1 Determinantal point processes (DPPs)

A DPP on a set of N items defines a probability dis-
tribution over subsets Y ⊆ [N]. It is parameterized by

a positive semi-definite (PSD) matrix L ∈ RN×N such
that the probability of subset Y is proportional to the
determinant of the submatrix LY : PL(Y) ∝ det(LY).

Any PSD matrix can be written as the Gramian
matrix for some set of vectors, so throughout this
work we use the decomposition L := B>B, where
B := [b1, . . . , bN] ∈ RD×N . One can think of column
bi as a feature vector describing item i. Our algorithm
is designed to work well for modest values of D, which
often occur in practice (e.g., our experiments on real
datasets have values of D ≤ 1,152). In cases where the
natural D is larger (e.g., natural language processing
applications), random projections can often be used
to reduce D without significantly changing the DPP
(Gillenwater et al., 2012).

Geometric interpretation. The determinant of
LY equals the squared volume of the parallelepiped
spanned by {bi}i∈Y (see Margalit and Rabinoff, 2017,
Section 4.3). Intuitively, to get large volume, the fea-
ture vectors must point in substantially different di-
rections (e.g., be diverse). If the feature vectors are
also scaled so that their magnitude is proportional to
their relevance, then larger volume also correlates with
more relevant items. Thus, for many applications, by
appropriately scaling item feature vectors, we can easily
construct a DPP that places high probability only on
sets that contain relevant, but diverse, items.

2.2 MAP inference

In practice, we often want to find the set that has
the highest probability under a DPP. As mentioned
earlier, this problem is known as maximum a posteriori
(MAP) inference. We are usually concerned with the
constrained version of the problem, where we must
select exactly K items (e.g., because there are a fixed
number of slots for recommendations in a user inter-
face). Formally, the problem is to find:

Y ∗ = argmax
Y⊆[N],|Y |=K

det(LY). (1)

This is known to be NP-hard (Ko et al., 1995; Kulesza
et al., 2012). However, since log-determinant is a sub-
modular function (Kelmans and Kimelfeld, 1983), in
practice one frequently applies the standard greedy
algorithm for submodular maximization (Nemhauser
et al., 1978) as a heuristic. The algorithm begins with
Y = ∅ and iteratively adds an item that maximizes the
marginal gain:

i∗ = argmax
i∈[N]

det(LY ∪{i}), (2)

until |Y | = K. This algorithm also has some formal
approximation guarantees when the minimum eigen-
value of L is greater than 1 (Sharma et al., 2015; Bian

Insu Han, Jennifer Gillenwater

et al., 2017). With a näıve implementation, the runtime
of the greedy algorithm is O(NK4), since computing
the determinant of a K × K matrix requires O(K3)
operations for general matrices. With a more nuanced
implementation, it requires just O(KDN) time (Chen
et al., 2018). Note that in what follows we will always
assume that K ≤ D. (It does not make sense to try to
select a set Y of size K > D using det(LY) as the set
score, since det(LY) = 0 for all Y of size > D.) The
idea behind the Chen et al. (2018) algorithm is that, in
the first iteration of the greedy algorithm, the score of
item i is Lii, and it is possible to simply update these
diagonal values to condition on selected items. Thus,
on iteration j, O(D) work is done to update each of
the N − j scores of the remaining items.

2.3 Customization

The algorithm proposed by Chen et al. (2018) is the
fastest known for the setting where there is a single,
fixed DPP. But often what we want in practice is to
run MAP inference for a large number of related DPPs.
For instance, consider the recommendation setting al-
luded to earlier, where every item i is described by a
fixed feature vector bi, but each user has their own
preferences vector w. Let W be a D × D diagonal
matrix with w on its diagonal. If we define customized
item features as follows:

b̂i := Wbi, B̂ = [b̂1, . . . , b̂N], (3)

then the corresponding customized DPP, L̂ = B̂>B̂,
places high probability on sets of items that are diverse,
but also relevant to the user’s interests. (This is the
same style of customization suggested by Gillenwater
et al. (2019).) Finding the highest-probability size-K
subset (solving the MAP problem) for the customized
DPP corresponds to generating a good recommendation
set for the user.

When a user visits a website, we need to quickly gen-
erate their recommendation set. If there are a large
number N of candidate items, then running Chen et al.
(2018)’s greedy algorithm in O(KDN) time will be
too slow. Instead, what we propose in this work is
to take advantage of the shared aspects of the users’
DPPs (the fixed item feature vectors), to do some of-
fline, one-time preprocessing that benefits all users. In
particular, we will build a structure that allows us to
do fast, approximate maximum inner product search
(MIPS) over the bi. With this structure, we can run
an approximate version of the greedy algorithm for any
customized DPP, L̂, in time sublinear in N .

We pause here to note some generalizations. First of
all, the “user preferences vector” could also be a vector
representing a user search query (e.g., an embedding

of the text of a search query by a neural net). The

customized DPP L̂ in this case would place high prob-
ability on sets that are diverse, but relevant to the
query. Secondly, W could be any non-diagonal D ×D
matrix, allowing preferences to be expressed as linear
combinations of the original features from B. In what
follows we will assume W could be non-diagonal, and
will refer to it as the “customization matrix”.

3 Algorithm

We start by showing that it is possible to write the
expression for marginal gain from Equation 2 as a
D×D matrix inner product where one of the matrices
is independent of the set selected thus far, Y , and
the customization matrix, W . By applying Schur’s
determinant identity, we can simplify the expression
for marginal gain as follows:

i∗ = argmax
i∈[N]

det(L̂Y ∪{i}) (4)

= argmax
i∈[N]

det(L̂Y) det(L̂ii − L̂iY (L̂Y)−1L̂Y i) (5)

= argmax
i∈[N]

L̂ii − L̂iY (L̂Y)−1L̂Y i. (6)

Recalling that L̂ = B̂>B̂, we can rewrite this as the
product of b̂i with a D ×D matrix:

L̂ii − L̂iY (L̂Y)−1L̂Y i (7)

= b̂
>
i b̂i − b̂

>
i B̂:Y (L̂Y)−1(B̂:Y)>b̂i (8)

= b̂
>
i (I − B̂:Y (L̂Y)−1(B̂:Y)>)b̂i. (9)

Splitting b̂i into the customization W and the fixed
features bi, we have:

b>i W
>(I − B̂:Y (L̂Y)−1(B̂:Y)>)Wbi. (10)

Defining Ĉ(Y) := B̂:Y (L̂Y)−1(B̂:Y)> and re-writing as
a matrix inner product:

i∗ = argmax
i∈[N]

〈
W>W −W>Ĉ(Y)W, bib

>
i

〉
. (11)

The second term in this inner product is constant over
all iterations of the greedy algorithm and all customiza-
tions since it does not depend on either Y or W . This
means that we have reduced the greedy algorithm to a
classic maximum inner product search (MIPS) problem.

MIPS. The classical MIPS problem has the following
form: given a fixed set of length-D vectors b1, . . . , bN ,
find argmaxi∈[N] 〈bi, q〉 for a query vector q ∈ RD.
Näıvely, this can be done in O(DN) time by a linear
search over all the bi. However, for many applications

Large-Scale MAP for Customized DPPs via MIPS

this is too expensive, and there is a substantial body of
work on approximately solving MIPS more efficiently.
This work largely focuses on building hash structures
(Shrivastava and Li, 2014; Yan et al., 2018) or tree struc-
tures (Ram and Gray, 2012; Koenigstein et al., 2012;
Bachrach et al., 2014; Auvolat et al., 2015) over the bi.
Building such structures is typically expensive, but the
amortized cost is small, as the same structure can be
used for all queries. There are also variants of these
algorithms for the more general matrix inner product
setting (Ram and Gray, 2012; Koenigstein et al., 2012;
Shrivastava and Li, 2014; Yan et al., 2018), which takes
the following form: given a fixed set of size D × D
matrices {M1, . . . ,MN}, find argmaxi∈[N] 〈Mi, Q〉 for

a query matrix Q ∈ RD×D. This is exactly the set-
ting we find ourselves in for DPP MAP inference, with
Mi = bib

>
i and query matrix Q = W>W−W>Ĉ(Y)W ,

as in Equation 11.

We can thus use any MIPS structure as a black box
to do DPP MAP inference via the greedy algorithm.
If we employ a MIPS structure M that guarantees
query time O(TM), and if we can compute the query
matrix Q in time O(TQ), then the greedy algorithm
requires O(TM+TQ) time per iteration. The following
proposition shows how to compute Q efficiently.

Proposition 1. Given a feature matrix B =
[b1, . . . , bN] ∈ RD×N and a customization matrix W ∈
RD×D, denote b̂i := Wbi for i ∈ [N] and L̂ = B̂>B̂ for

B̂ = [b̂1, . . . , b̂N]. Consider Y := {a1, . . . , a|Y |} ⊆ [N].
Then:

Ĉ(Y) := B̂:Y (L̂Y)−1(B̂:Y)> =

|Y |∑
k=1

ĉkĉ
>
k , (12)

for ĉk defined as follows:

ĉk :=
d̂k√
b̂
>
ak
d̂k

, d̂k := b̂ak −

k−1∑
j=1

ĉj ĉ
>
j

 b̂ak
1.

(13)

Proofs for all propositions, lemmas, and theorems not
given in the main text of the paper can be found in the
supplement. This proposition implies we can compute
Ĉ(Y) spending only O(D2) time each iteration, since

on iteration k we just have to add in ĉkĉ
>
k . Since we

can also compute W>ĉi in O(D2) time, the overall
query matrix Q can similarly be computed in O(D2).

Algorithm 1 summarizes the proposed algorithm. If the
MIPS structure M’s query time is O(TM), then the
overall runtime is O(KTM +KD2). In a subsequent

1Assume
0∑

j=1

ĉj ĉj is the all-zeros matrix, so d̂1 := b̂a1 .

Algorithm 1 Customized DPP MAP via MIPS

1: Input: MIPS structure M, query matrix W , and
number of items to choose K

2: Y ← ∅ and Q = W>W and Ĉ(∅) = 0
3: for i = 1 to K do
4: a, ba ←M (Q)

5: b̂a ←Wba

6: d̂i ← b̂a − C(Y)b̂a and ĉi ← d̂i/

√
b̂
>
a d̂i

7: Ĉ(Y ∪{a}) ← Ĉ(Y) + ĉiĉ
>
i

8: Y ← Y ∪ {a}
9: Q← Q−W>ĉiĉ>i W

10: Output : Y

section, we discuss MIPS structures and their query
times in more detail.

3.1 Approximation guarantee

Intuitively, the output of Algorithm 1 should be close
to that of the exact greedy algorithm when queries to
the MIPS structureM return near-optimal results. We
provide a more precise characterization of this below.

First, we recall the approximation guarantee of the ex-
act greedy algorithm, where an element that maximizes
marginal gain is selected each iteration.

Theorem 1. Given B̂ = [b̂1, . . . , b̂N] ∈ RD×N , as-

sume that the smallest singular value of B̂:S for any
S ⊆ [N] such that |S| = K is greater than 1. Then, it
holds that:

det(L̂Y) ≥ (det(L̂Y ∗))(1−1/e), (14)

where Y is the output of the exact greedy algorithm
and Y ∗ is the size-K set with maximum value: Y ∗ =
max|S|=K det(L̂S).

Briefly, Theorem 1 is a result of the fact that log det is
a monotone submodular function when the eigenvalues
of the matrices that it operates on are large enough.

Next, we state a formal definition of a (1 − ε)-MIPS
structure on matrices.

Definition 1. Given M1, . . . ,MN ∈ RD×D and a
query matrix Q ∈ RD×D such that 〈Mi, Q〉 ≥ 0 ∀i,
a function M : RD×D → [N] is a (1− ε)-approximate
MIPS structure on M1, . . . ,MN if it holds that:

〈Ma, Q〉 ≥ (1− ε) max
i∈[N]

〈Mi, Q〉, (15)

where a ∈ [N] is the output of M(Q).

We are now ready to state an approximation guarantee
for our algorithm.

Insu Han, Jennifer Gillenwater

Theorem 2. Given b1, . . . , bN ∈ RD and a customiza-
tion matrix W ∈ RD×D, denote b̂i := Wbi for i ∈ [N]

and L̂ = B̂>B̂ for B̂ = [b̂1, . . . , b̂N]. Assume that the

smallest singular value of B̂:S for any S ⊆ [N] such
that |S| = K is greater than 1. Let M be a (1 − ε)-
approximate MIPS structure over the matrices bib

>
i .

Then, it holds that:

det(L̂Y) ≥ (1− ε)K(det(L̂Y ∗))(1−1/ε), (16)

where Y is the output of Algorithm 1, and Y ∗ is the size-
K set with maximum value: Y ∗ = max|S|=K det(L̂S).

This theorem implies that, for small ε and K, Algo-
rithm 1 is a good DPP MAP approximation algorithm.

3.2 Hybrid MIPS structures

Building and querying a matrix-MIPS structure over all
the outer product matrices bib

>
i can be too expensive

for some tasks, especially when the number of fea-
tures D is in the thousands. For example, a real-world
dataset from YouTube2 that we experiment with has
D = 1,152, which makes D2 ≈ 1 million. Intuitively,
building such a structure also seems wasteful, since the
D2 entries of bib

>
i only depend on the D values of bi.

As an alternative, we propose to create a hybrid MIPS
structure: build a standard vector-MIPS structure on
the bi, but equip it with a unique query function that
is suited to our matrix-MIPS needs. To make this
concrete, we delve into the details of how to implement
this for one particular MIPS structure, the k-means
tree. Auvolat et al. (2015) showed k-means trees often
outperform other tree and hash methods for the MIPS
problem, which motivates our use of them.

3.2.1 Hybrid k-means tree

A k-means tree over vectors b1, . . . , bN ∈ RD can be
constructed as shown in Algorithm 2. The root node
represents the full set of vectors, I = [N]. The al-
gorithm starts from this set, runs k-means clustering,
and creates a child node for the contents of each clus-
ter. This process is then iterated on the child nodes.
Branching halts when a node represents Nleaf or fewer
items. Each node also stores a set of centroid vectors:
the average feature vectors of its children.

In a typical vector-MIPS setting, there would be an
input query vector q ∈ RD, and the search would
proceed as follows: find the child j∗ of the root node
whose centroid b̄j∗ has maximum inner product with q,
then repeat this process for the children of that node,
until a leaf node is reached. At the leaf node, the set
Nleaf = O(1) is small enough that an exact search can

2https://research.google.com/youtube8m/

Algorithm 2 Tree construction

1: procedure Construct(I, {bi}i∈I , k, Nleaf)
2: T .I← I
3: if |I| ≤ Nleaf then
4: T .bi ← bi for i ∈ I
5: T .Tj ← ∅ for i ∈ I
6: return T
7: {Ij}kj=1 ← Partition of I using k-means clus-

tering on {bi}i∈I
8: for j = 1 to k do
9: T .bj ← 1

|Ij |
∑
i∈Ij bi

10: T .Tj ← Construct(Ij , {bi}i∈Ij , k,Nleaf)

11: return T

Algorithm 3 Tree search

1: procedure Search(T , Q)
2: j∗ ← argmaxj∈[k]

〈
(T .b̄j)(T .b̄j)>, Q

〉
3: if T is a leaf node then
4: return item in T .I corresponding to j∗

5: Search(T .Tj∗ , Q)

be performed to select whichever of its b vectors has
largest inner product with q.

In our setting, we will use the same recursive process,
but with two main differences: 1) our input will be a
query martix Q (see Line 4 of Algorithm 1), and 2)

we will chose the child j∗ that maximizes
〈
b̄j∗ b̄

>
j∗ , Q

〉
.

Algorithm 3 summarizes this search process.

If we instead built a standard matrix-MIPS k-means
tree over the bib

>
i , each node would require an addi-

tional factor of D storage space for centroids, since
the centroids would be D × D matrices rather than
length-D vectors. Hence, using our hybrid structure
can save substantial space. We can also bound the
difference between the inner products computed by
standard matrix-MIPS search and the inner products
computed by our hybrid search from Algorithm 3.

Theorem 3. Given vectors bi for i ∈ C ⊆ [N], define
bC := 1

|C|
∑
i∈C bi and BC := 1

|C|
∑
i∈C bib

>
i . Consider

W and Ĉ(Y) from Proposition 1, and let Q = W>W −
W>C(Y)W as in Algorithm 1. Then, it holds that:∣∣∣ 〈bCb>C , Q〉− 〈BC , Q〉 ∣∣∣ ≤ ‖W‖222

(
max
i,j∈C

‖bi − bj‖22

)
.

(17)

This result implies that, as long as the clusters found
by k-means are relatively compact, we would expect
the results of standard matrix-MIPS search and our
hybrid-MIPS search to be similar.

Beyond the space savings, the hybrid approach can also

https://research.google.com/youtube8m/

Large-Scale MAP for Customized DPPs via MIPS

offer substantial query time savings in the case where
the customization matrix W is diagonal: diag(W) = w.
This is because the inner product maximized in the
search process (Line 2 of Algorithm 3) can be computed
more efficiently than the näıve O(D2). To make this

precise, recall the query Q = W>W −W>Ĉ(Y)W from
Algorithm 1. Let b̄ ∈ RD be a centroid of some cluster
in the MIPS k-means tree. Then we can re-write the
matrix inner product from the tree search as follows:

〈
b̄b̄
>
, Q
〉

= b̄
>

W 2 −W
|Y |−1∑
j=1

ĉj ĉ
>
j W

 b̄ (18)

=
∥∥w � b̄

∥∥2

2
−
|Y |−1∑
j=1

(
ĉ>j (w � b̄)

)2

, (19)

where ĉj is the vector defined in Proposition 1 and �
indicates elementwise product. This expression requires
just O(|Y |D) time to compute.

3.3 Runtime

Putting together all of the approximations from the
previous sections, we are now ready to state the over-
all runtime complexity of Algorithm 1. The cost of
computing the tree is the cost of running k-means clus-
tering O(logN) times. The cost of querying is the cost
of computing k inner products for each of the O(logN)
levels of the tree: O(kD2 logN), or O(kKD logN) for
diagonal customization matrix W . The overall MAP
algorithm queries K times. It also needs to update Q
this many times, which, as discussed in the text fol-
lowing Proposition 1, requires O(D2) time per update.
Combining these, we have Theorem 4.

Theorem 4. Given b1, . . . , bN ∈ RD, assume that a
k-means cluster tree can be built as in Algorithm 2
with depth O(logN). Then the cost for construct-
ing the tree is O(kDN logN). Given this tree as in-
put, Algorithm 1 can run in O(kKD2 logN) time, or
O(kK2D logN +KD2) time when the customization
matrix W is diagonal.

This runtime is sublinear in N , and hence more practi-
cal than previous versions of the greedy algorithm for
the large-scale setting.

4 Experiments

We benchmark the performance of various algorithms
for recommender systems on both synthetic and real-
world datasets. In particular, we evaluate two variants
of our algorithms, MatrixMIPS and HybridMIPS,
based on k-means cluster trees over matrices and vec-
tors, respectively. (HybridMIPS is the algorithm
presented in Section 3.2.) We compare them to:

• Greedy: The O(KDN) exact greedy algorithm
from Chen et al. (2018).

• StochGreedy: An accelerated greedy algorithm
by (Mirzasoleiman et al., 2015). It first samples a
few items uniformly at random, then selects the
one among these samples that has largest marginal
gain. We choose the number of samples so that
the runtime is comparable to HybridMIPS.

• FastSamp: The DPP sampling algorithm pro-
posed by Derezinski et al. (2019), with parameters
optimized for runtime (see supplement Section B).
Note that these parameters do not affect the qual-
ity of the samples; the algorithm always produces
exact samples from the DPP.

For FastSamp we use a Python implementation pro-
vided by Derezinski et al. (2019), and for all other
algorithms we use our own MATLAB implementations.

Since exact DPP MAP inference is NP-hard, we use
Greedy as the baseline instead of the optimal MAP
set. To evaluate, we use the ratio of log-probabilities:

log det(L̂Y)/ log det(L̂Y), (20)

where Y is the output of Greedy. This metric was also
used for DPP MAP inference by Han et al. (2017) and
Chen et al. (2018). We set K = 10 for the number of
items to select and report the best result by searching
Nleaf ∈ {200, 1000} for the size of leaf nodes in our k-
means trees, and k = {50, 100, 500} for the branching
factor on these trees. All experiments are preformed
using a machine with a hexa-core Intel CPU (Core
i7-5930K, 3.5 GHz) and 96 GB of memory.

4.1 Synthetic data for non-customized DPP

We generate features by constructing synthetic clus-
ters as follows: 1) sample 10 center points b1, . . . , b10

from a standard Gaussian distribution in D = 128-
dimensional space, 2) sample integers s1, . . . , s10 from
a Poisson distribution with mean 10 and normalize so
that

∑
i si = N , 3) draw si points from a Gaussian

distribution with mean bi and covariance matrix 0.1I
where I is a D-by-D identity matrix. We vary the
number of items N from 10,000 to 100,000. For this
setting, the DPP is not customized: W = I.

Figure 1 shows the results. Pre-processing for Hybrid-
MIPS and MatrixMIPS is construction of the MIPS
tree structure, and item selection is running greedy
given this structure. Pre-processing for FastSamp
involves constructing a Nyström approximation, and
item selection is sampling using this.

MatrixMIPS: The slowness of pre-processing and
item selection provides evidence that HybridMIPS

Insu Han, Jennifer Gillenwater

2 4 6 8 10
number of items 10 4

10 -1

10 0

10 1

10 2

10 3

pr
e-

pr
oc

es
si

ng
 ti

m
e

[s
ec

]

HybridMIPS
MatrixMIPS
FastSampling

(a)

2 4 6 8 10
number of items N 10 4

10 -3

10 -2

10 -1

ite
m

 s
el

ec
tio

n
tim

e
[s

ec
]

ExactGreedy
StochGreedy
HybridMIPS
MatrixMIPS
FastSampling

(b)

2 4 6 8 10
number of items N 10 4

0.85

0.9

0.95

1

lo
g-

pr
ob

ab
ili

ty
 r

at
io

ExactGreedy
StochGreedy
HybridMIPS
MatrixMIPS
FastSampling

(c)

Figure 1: Results for synthetic, non-customized DPP: (a) pre-processing time, (b) item selection (sampling or
greedy algorithm) time, and (c) log-probability ratio. The sampling time and log-probability ratio of FastSamp
are averages of 1,000 independent samples from the DPP.

is more practical in a large-N setting. MatrixMIPS
achieves log-probability ratios closest to Greedy, but
the ratios of HybridMIPS are also very similar.

FastSamp: Again here, the slowness of pre-processing
and item selection provides evidence that Hybrid-
MIPS is more practical in a large-N setting. Fast-
Samp’s log-probability ratios are also substantially
smaller than those of HybridMIPS (which is to be
expected, as maximizing log-probability is not the main
goal of FastSamp).

StochGreedy: We set the number of random samples
to 15 logN for this algorithm so that its runtime is
comparable to that of our algorithm. The advantage
of HybridMIPS over StochGreedy is not evident
from these particular synthetic plots, since the number
of clusters of the data is small (i.e., 10). We see a large
difference between the two in more complex settings
though, as shown in the next section.

Lazy evaluations: We briefly note here that lazy
evaluations (Minoux, 1978) can further speed up
StochGreedy, and our MIPS algorithms as well;
since the tree search (Algorithm 3) returns multiple
candidate items, it is possible to apply lazy evaluations
to them just as to StochGreedy’s candidates. For
the setting N = 100,000, D = 128,K = 10, we see
that the average runtime for StochGreedy improves
from 1.416ms to 1.334ms with lazy evaluations, while
the runtime for HybridMIPS improves slightly more,
from 1.447ms to 1.163ms.

4.2 Real-world data for customized DPP

In this section we consider four datasets: Netflix3,
MovieLens4, Yahoo!Music5 and YouTube6.

3https://www.kaggle.com/netflix-inc/
netflix-prize-data

4https://grouplens.org/datasets/movielens/
5https://webscope.sandbox.yahoo.com/
6https://research.google.com/youtube8m/

Netflix, MovieLens, and Yahoo!Music provide
user-item ratings. We randomly split the rating entries
of Netflix and MovieLens into 90% for training
and 10% for test. For Yahoo!Music, the split is
instead the default one provided by the dataset. For
these three training sets, we then run non-negative
matrix factorization with fixed dimension D = 128
(Koren et al., 2009) to extract user and item features.
Then, at test time, the item features constitute the bi
and each user’s features w form the diagonal of their
customization matrix W . We select the 1,000 users
with the highest number of ratings and report results
averaged over these users.

We also compare to collaborative filtering
(CollabFilt) for these three datasets. Given
a user feature vector w, it finds the K items that have
maximum inner product with w. For a search among
N items, its runtime is O(ND).

To get timing results on a larger dataset, we consider
YouTube. This dataset has a total of 3.8 million
videos, each described by D = 1,152 features. We
uniformly sample these to get a dataset of size N =
1 million. For this dataset there are no public user
ratings, so we use a non-customized DPP, i.e., W = I.

4.2.1 Timing and approximation ratios

Results are reported in Table 1. Note that we do not
compare to FastSamp here because it is not applicable
to the customized setting.

Greedy: HybridMIPS achieves near-optimal log-
probability ratios while running orders of magnitude
faster—a ×224 speedup on YouTube.

StochGreedy: We set the parameters so that its
runtime is comparable to that of our algorithm, and
we see that it is unable to match our algorithm’s log-
probability ratios in that time.

CollabFilt: Our method typically runs in a compa-

https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/
https://research.google.com/youtube8m/

Large-Scale MAP for Customized DPPs via MIPS

Table 1: Results for K = 10, averaged over 1,000 users.

Dataset
Number of
items N

Feature
dimension D

Method
Running time Log-probability

ratioPre-processing Item selection

Netflix 17, 770 128

Greedy − 7.5 ms 1 (baseline)
StochGreedy − 2.3 ms 0.8795
CollabFilt − 1.1 ms 0.6713
HybridMIPS 10.23 s 2.3 ms 0.9946

MovieLens 53,389 128

Greedy − 31.4 ms 1 (baseline)
StochGreedy − 2.4 ms 0.7574
CollabFilt − 3.1 ms 0.7738
HybridMIPS 42.4 s 2.2 ms 0.9983

Yahoo!Music 136,736 128

Greedy − 69.2 ms 1 (baseline)
StochGreedy − 2.5 ms 0.9317
CollabFilt − 7.4 ms 0.7830
HybridMIPS 104.8 s 2.5 ms 0.9838

YouTube 1,000,000 1,152
Greedy − 3.3 s 1 (baseline)

StochGreedy − 15 ms 0.9391
HybridMIPS 3,448 s 14.7 ms 0.9665

rable amount of time, but has a substantially higher
log-probability ratio.

4.2.2 Relevance and diversity scores

MovieLens and Yahoo!Music also include class la-
bels for items (e.g., movie and music genres). Thus, for
these datasets we can provide separate relevance and
diversity scores. We denote item i’s classes by Ci. If Z
is the items in the test set to which a user gave high
ratings (not less than 3), then we compute relevance
(rel) and diversity (div) for an output Y as follows:

rel :=
|(∪i∈Y Ci) ∩ (∪i∈ZCi)|

| ∪i∈Y Ci|
, div :=

| ∪i∈Y Ci|∑
i∈Y |Ci|

.

Note that both scores are in [0, 1]. We observe from
Table 2 that CollabFilt achieves the best relevance
ratio for all cases, but its diversity is relatively small
compared to Greedy and HybridMIPS. The diversity
ratio of HybridMIPS is similar to Greedy, but recall
that HybridMIPS runs significantly faster.

Table 2: Results for K = 10, averaged over 1,000 users.

Dataset Method Relevance Diversity

MovieLens
Greedy 0.9898 0.4021

HybridMIPS 0.9901 0.4031
CollabFilt 0.9930 0.3706

Yahoo!Music
Greedy 0.5211 0.2688

HybridMIPS 0.5563 0.2386
CollabFilt 0.6521 0.1820

4.2.3 Example user

For Figure 2, we selected a single user from Movie-
Lens, and made a histogram of classes of items based

on the user’s high-rated items, HybridMIPS’s items,
and CollabFilt’s items. Observe that HybridMIPS
recommends more diverse genres, e.g., HybridMIPS
recommends some crime, horror, and mystery movies
while CollabFilt does not include any of these.

Dra
m

a

Com
ed

y

Thril
ler

Act
ion

Rom
an

ce

Sci-
Fi

Crim
e

Adve
ntu

re

M
ys

te
ry

Fan
ta

sy

Hor
ro

r

Child
re

n
W

ar

M
usic

al

Anim
at

ion

W
es

te
rn

Docu
m

en
ta

ry

IM
AX

Film
-N

oir

movie genres

0.00

0.05

0.10

0.15

0.20

fr
eq

ue
nc

y
of

ge
nr

es

User selections
HybridMIPS
CollabFilter

Figure 2: K = 20 movie genres from user ratings (blue),
HybridMIPS (green), and CollabFilt (red).

5 Conclusion

In this work we introduced a method leveraging MIPS
for customized DPP MAP inference. Empirical results
on recommendation tasks indicate that this technique
significantly speeds up runtimes while sacrificing little
accuracy. We also believe that the proposed MAP
algorithm is likely of interest for other applications.
For instance, in batch-mode active learning, it is often
the goal to select a diverse set of examples about which
the current model is uncertain. If we encode model
uncertainty in the customization matrix W , then the
resulting DPP places high probability on exactly these
sets of examples. Running HybridMIPS would hence
be a reasonable active learning method.

Insu Han, Jennifer Gillenwater

References

Anari, N., Gharan, S. O., and Rezaei, A. (2016).
Monte Carlo Markov Chain Algorithms for Sampling
Strongly Rayleigh Distributions and Determinantal
Point Processes. In Conference on Learning Theory
(COLT).

Auvolat, A., Chandar, S., Vincent, P., Larochelle, H.,
and Bengio, Y. (2015). Clustering is Efficient for
Approximate Maximum Inner Product Search. arXiv
preprint arXiv:1507.05910.

Bachrach, Y., Finkelstein, Y., Gilad-Bachrach, R.,
Katzir, L., Koenigstein, N., Nice, N., and Paquet, U.
(2014). Speeding Up the Xbox Recommender System
Using a Euclidean Transformation for Inner-product
Spaces. In Conference on Recommender Systems
(RecSys).

Bian, A. A., Buhmann, J. M., Krause, A., and Tschi-
atschek, S. (2017). Guarantees for Greedy Maximiza-
tion of Non-submodular Functions with Applications.
In International Conference on Machine Learning
(ICML).

Bıyık, E., Wang, K., Anari, N., and Sadigh, D. (2019).
Batch Active Learning Using Determinantal Point
Processes. arXiv:1906.07975.

Chao, W., Gong, B., Grauman, K., and Sha, F. (2015).
Large-Margin Determinantal Point Processes. In
Conference on Uncertainty in Artificial Intelligence
(UAI).

Chen, L., Zhang, G., and Zhou, E. (2018). Fast greedy
MAP inference for Determinantal Point Process to
improve recommendation diversity. In Neural Infor-
mation Processing Systems (NIPS).

Chen, L., Zhang, G., and Zhou, H. (2017). Improving
the Diversity of Top-N Recommendation via Deter-
minantal Point Process. In Large Scale Recommen-
dation Systems Workshop.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chan-
dra, T., Aradhye, H., Anderson, G., Corrado, G.,
Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L.,
Jain, V., Liu, X., and Shah, H. (2016). Wide & Deep
Learning for Recommender Systems. In Workshop
on Deep Learning for Recommender Systems.

Derezinski, M., Calandriello, D., and Valko, M. (2019).
Exact sampling of determinantal point processes with
sublinear time preprocessing. arXiv:1905.13476.

Elfeki, M., Couprie, C., Riviere, M., and Elhoseiny, M.
(2019). GDPP: Learning Diverse Generations using
Determinantal Point Processes. In International
Conference on Machine Learning (ICML).

Gartrell, M., Brunel, V.-E., Dohmatob, E., and Krich-
ene, S. (2019). Learning Nonsymmetric Determinan-
tal Point Processes. arXiv:1905.12962.

Gillenwater, J., Kulesza, A., Mariet, Z., and Vassil-
vtiskii, S. (2019). A Tree-Based Method for Fast Re-
peated Sampling of Determinantal Point Processes.
In International Conference on Machine Learning
(ICML).

Gillenwater, J., Kulesza, A., and Taskar, B. (2012).
Discovering Diverse and Salient Threads in Docu-
ment Collections. In Empirical Methods in Natural
Language Processing (EMNLP).

Han, I., Kambadur, P., Park, K., and Shin, J. (2017).
Faster greedy MAP inference for determinantal point
processes. In International Conference on Machine
Learning (ICML).

Kelmans, A. and Kimelfeld, B. (1983). Multiplicative
submodularity of a matrix’s principal minor as a
function of the set of its rows and some combinatorial
applications. Discrete Mathematics.

Ko, C.-W., Lee, J., and Queyranne, M. (1995). An
Exact Algorithm for Maximum Entropy Sampling.
Operations Research.

Koenigstein, N., Ram, P., and Shavitt, Y. (2012). Effi-
cient retrieval of recommendations in a matrix fac-
torization framework. In Conference on Information
and Knowledge Management (CIKM).

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix
Factorization Techniques for Recommender Systems.
Computer.

Kulesza, A., Taskar, B., et al. (2012). Determinantal
Point Processes for Machine Learning. Foundations
and Trends R© in Machine Learning.

Li, C., Jegelka, S., and Sra, S. (2016a). Fast DPP
Sampling for Nystrom with Application to Kernel
Methods. In International Conference on Machine
Learning (ICML).

Li, C., Jegelka, S., and Sra, S. (2016b). Fast Mix-
ing Markov Chains for Strongly Rayleigh Measures,
DPPs, and Constrained Sampling. In Neural Infor-
mation Processing Systems (NIPS).

Macchi, O. (1975). The Coincidence Approach to
Stochastic Point Processes. Advances in Applied
Probability.

Margalit, D. and Rabinoff, J. (2017). Interactive Linear
Algebra.

Mariet, Z. and Sra, S. (2016). Diversity Networks:
Neural Network Compression Using Determinantal
Point Processes. In International Conference on
Learning Representations (ICLR).

McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Be-
ing Accurate is Not Enough: How Accuracy Metrics
Have Hurt Recommender Systems. In CHI Confer-
ence on Human Factors in Computing Systems.

http://proceedings.mlr.press/v49/anari16.pdf
http://proceedings.mlr.press/v49/anari16.pdf
http://proceedings.mlr.press/v49/anari16.pdf
https://arxiv.org/pdf/1507.05910.pdf
https://arxiv.org/pdf/1507.05910.pdf
http://ulrichpaquet.com/Papers/SpeedUp.pdf
http://ulrichpaquet.com/Papers/SpeedUp.pdf
http://ulrichpaquet.com/Papers/SpeedUp.pdf
http://proceedings.mlr.press/v70/bian17a/bian17a.pdf
http://proceedings.mlr.press/v70/bian17a/bian17a.pdf
https://arxiv.org/abs/1906.07975.pdf
https://arxiv.org/abs/1906.07975.pdf
https://arxiv.org/pdf/1411.1537.pdf
https://papers.nips.cc/paper/7805-fast-greedy-map-inference-for-determinantal-point-process-to-improve-recommendation-diversity.pdf
https://papers.nips.cc/paper/7805-fast-greedy-map-inference-for-determinantal-point-process-to-improve-recommendation-diversity.pdf
https://papers.nips.cc/paper/7805-fast-greedy-map-inference-for-determinantal-point-process-to-improve-recommendation-diversity.pdf
https://lsrs2017.files.wordpress.com/2017/08/lsrs_2017_lamingchen.pdf
https://lsrs2017.files.wordpress.com/2017/08/lsrs_2017_lamingchen.pdf
https://lsrs2017.files.wordpress.com/2017/08/lsrs_2017_lamingchen.pdf
https://dl.acm.org/citation.cfm?id=2988454
https://dl.acm.org/citation.cfm?id=2988454
https://arxiv.org/pdf/1905.13476.pdf
https://arxiv.org/pdf/1905.13476.pdf
http://proceedings.mlr.press/v97/elfeki19a/elfeki19a.pdf
http://proceedings.mlr.press/v97/elfeki19a/elfeki19a.pdf
https://arxiv.org/pdf/1905.12962.pdf
https://arxiv.org/pdf/1905.12962.pdf
http://jgillenw.com/icml2019.pdf
http://jgillenw.com/icml2019.pdf
http://jgillenw.com/emnlp2012.pdf
http://jgillenw.com/emnlp2012.pdf
http://proceedings.mlr.press/v70/han17a/han17a.pdf
http://proceedings.mlr.press/v70/han17a/han17a.pdf
https://www.sciencedirect.com/science/article/pii/0012365X83900110
https://www.sciencedirect.com/science/article/pii/0012365X83900110
https://www.sciencedirect.com/science/article/pii/0012365X83900110
https://www.sciencedirect.com/science/article/pii/0012365X83900110
https://pubsonline.informs.org/doi/abs/10.1287/opre.43.4.684
https://pubsonline.informs.org/doi/abs/10.1287/opre.43.4.684
http://www.eng.tau.ac.il/~shavitt/pub/CIKM12.pdf
http://www.eng.tau.ac.il/~shavitt/pub/CIKM12.pdf
http://www.eng.tau.ac.il/~shavitt/pub/CIKM12.pdf
https://ieeexplore.ieee.org/document/5197422
https://ieeexplore.ieee.org/document/5197422
http://www.alexkulesza.com/pubs/dpps_fnt12.pdf
http://www.alexkulesza.com/pubs/dpps_fnt12.pdf
http://proceedings.mlr.press/v48/lih16.pdf
http://proceedings.mlr.press/v48/lih16.pdf
http://proceedings.mlr.press/v48/lih16.pdf
https://arxiv.org/pdf/1608.01008.pdf
https://arxiv.org/pdf/1608.01008.pdf
https://arxiv.org/pdf/1608.01008.pdf
https://www.jstor.org/stable/1425855?seq=1#metadata_info_tab_contents
https://www.jstor.org/stable/1425855?seq=1#metadata_info_tab_contents
https://textbooks.math.gatech.edu/ila/determinants-volumes.html
https://textbooks.math.gatech.edu/ila/determinants-volumes.html
https://arxiv.org/pdf/1511.05077.pdf
https://arxiv.org/pdf/1511.05077.pdf
https://arxiv.org/pdf/1511.05077.pdf
https://grouplens.org/site-content/uploads/accurate-CHI-20061.pdf
https://grouplens.org/site-content/uploads/accurate-CHI-20061.pdf
https://grouplens.org/site-content/uploads/accurate-CHI-20061.pdf

Large-Scale MAP for Customized DPPs via MIPS

Minoux, M. (1978). Accelerated greedy algorithms for
maximizing submodular set functions. In Optimiza-
tion techniques.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.,
Vondrák, J., and Krause, A. (2015). Lazier Than
Lazy Greedy. In Conference on Artificial Intelligence
(AAAI).

Nemhauser, G., Wolsey, L., and Fisher, M. (1978). An
Analysis of Approximations for Maximizing Submod-
ular Set Functions I. Mathematical Programming,
14(1).

Ram, P. and Gray, A. G. (2012). Maximum inner-
product search using cone trees. In Conference on
Knowledge Discovery and Data Mining (KDD).

Sharghi, A., Borji, A., Li, C., Yang, T., and Gong, B.
(2018). Improving Sequential Determinantal Point
Processes for Supervised Video Summarization. In
Proceedings of the European Conference on Computer
Vision(ECCV).

Sharma, D., Kapoor, A., and Deshpande, A. (2015). On
Greedy Maximization of Entropy. In International
Conference on Machine Learning (ICML).

Shrivastava, A. and Li, P. (2014). Asymmetric LSH
(ALSH) for sublinear time maximum inner product
search (MIPS). In Neural Information Processing
Systems (NIPS).

Vargas, S., Baltrunas, L., Karatzoglou, A., and Castells,
P. (2014). Coverage, Redundancy and Size-awareness
in Genre Diversity for Recommender Systems. In
Conference on Recommender Systems (RecSys).

Wilhelm, M., Ramanathan, A., Bonomo, A., Jain, S.,
Chi, E. H., and Gillenwater, J. (2018). Practical
Diversified Recommendations on YouTube with De-
terminantal Point Processes. In Conference on In-
formation and Knowledge Management (CIKM).

Yan, X., Li, J., Dai, X., Chen, H., and Cheng, J. (2018).
Norm-ranging lsh for maximum inner product search.
In Neural Information Processing Systems (NIPS).

Yu, C., Lakshmanan, L., and Amer-Yahia, S. (2009).
It Takes Variety to Make a World: Diversification in
Recommender Systems. In Conference on Extending
Database Technology (EDBT).

Zhang, C., Kjellström, H., and Mandt, S. (2017). De-
terminantal Point Processes for Mini-Batch Diversi-
fication. In Conference on Uncertainty in Artificial
Intelligence (UAI).

Zhang, M. and Hurley, N. (2008). Avoiding Monotony:
Improving the Diversity of Recommendation Lists.
In Conference on Recommender Systems (RecSys).

https://link.springer.com/chapter/10.1007/BFb0006528
https://link.springer.com/chapter/10.1007/BFb0006528
https://las.inf.ethz.ch/files/mirzasoleiman15lazier.pdf
https://las.inf.ethz.ch/files/mirzasoleiman15lazier.pdf
http://www.cs.toronto.edu/~eidan/papers/submod-max.pdf
http://www.cs.toronto.edu/~eidan/papers/submod-max.pdf
http://www.cs.toronto.edu/~eidan/papers/submod-max.pdf
https://dl.acm.org/citation.cfm?doid=2339530.2339677
https://dl.acm.org/citation.cfm?doid=2339530.2339677
http://openaccess.thecvf.com/content_ECCV_2018/papers/Aidean_Sharghi_Improving_Sequential_Determinantal_ECCV_2018_paper.pdf
http://openaccess.thecvf.com/content_ECCV_2018/papers/Aidean_Sharghi_Improving_Sequential_Determinantal_ECCV_2018_paper.pdf
http://proceedings.mlr.press/v37/sharma15.pdf
http://proceedings.mlr.press/v37/sharma15.pdf
https://papers.nips.cc/paper/5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips.pdf
https://papers.nips.cc/paper/5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips.pdf
https://papers.nips.cc/paper/5329-asymmetric-lsh-alsh-for-sublinear-time-maximum-inner-product-search-mips.pdf
http://ir.ii.uam.es/saul/pubs/recsys2014-vargas-tid.pdf
http://ir.ii.uam.es/saul/pubs/recsys2014-vargas-tid.pdf
http://jgillenw.com/cikm2018.pdf
http://jgillenw.com/cikm2018.pdf
http://jgillenw.com/cikm2018.pdf
http://papers.nips.cc/paper/7559-norm-ranging-lsh-for-maximum-inner-product-search.pdf
https://openproceedings.org/2009/conf/edbt/YuLA09.pdf
https://openproceedings.org/2009/conf/edbt/YuLA09.pdf
http://auai.org/uai2017/proceedings/papers/69.pdf
http://auai.org/uai2017/proceedings/papers/69.pdf
http://auai.org/uai2017/proceedings/papers/69.pdf
https://dl.acm.org/citation.cfm?id=1454030
https://dl.acm.org/citation.cfm?id=1454030

