Sparsity in Dependency Grammar Induction

Jennifer Gillenwater!  Kuzman Ganchev!  Jodo Graca?®
Ben Taskar!  Fernando Pereira3

LComputer & Information Science
University of Pennsylvania

21.2F INESC-ID, Lisboa, Portugal

3Google, Inc.

July 12, 2010



m A generative dependency parsing model

2/9



m A generative dependency parsing model

m The ambiguity problem this model faces

2/9



m A generative dependency parsing model
m The ambiguity problem this model faces

m Previous attempts to reduce ambiguity

2/9



A generative dependency parsing model
The ambiguity problem this model faces

Previous attempts to reduce ambiguity

How posteriors provide a good measure of ambiguity

2/9



A generative dependency parsing model
The ambiguity problem this model faces
Previous attempts to reduce ambiguity

How posteriors provide a good measure of ambiguity

Applying posterior regularization to the likelihood objective

2/9



A generative dependency parsing model

The ambiguity problem this model faces
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Applying posterior regularization to the likelihood objective

Success with respect to EM and parameter prior baselines
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Dependency model with valence

(Klein and Manning, ACL 2004)
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po(x,y) = eroot(V)
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Dependency model with valence

(Klein and Manning, ACL 2004)

y N/\$//\N

X
Regularization creates sparse grammars

pg(x, Y) = Hroot(V)
'astop(nostop| V/,right,false) * Hchild(N\ V/,right)
‘Hstop(stop|V,right,true) ’ 95top(nostop|V,Ieft,false) ’ 9child(N|V,left)
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Traditional objective optimization

m Traditional objective: marginal log likelihood

m@axﬁ(@) = Ex[log py(x)] = Ex[|0g§y:P0(Xa )
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Traditional objective optimization

m Traditional objective: marginal log likelihood

m@axﬁ(@) = Ex[log py(x)] = Ex[|0g§y:P0(Xa )

m Optimization method: expectation maximization (EM)
m Problem: EM may learn a very ambiguous grammar

m Too many non-zero probabilities
m Ex: V — N should have non-zero probability,
but V— DET, V — JJ, V — PRPS$, etc. should be 0
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Previous approaches to improving performance

m Structural annealing!

Smith and Eisner, ACL 2006
Headden et al., NAACL 2009
Liang et al., EMNLP 2007; Johnson et al., NIPS 2007; Cohen et al., NIPS 2008, NAACL 2009
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Previous approaches to improving performance

m Structural annealing!

m L£(¢'): Model extension?
m £(0) + log p(#): Parameter regularization®

m Tend to reduce unique # of children per parent, rather than
directly reducing # of unique parent-child pairs
u ech,'/d(yp(’d,',) 7é posterior(X% Y)

Smith and Eisner, ACL 2006
Headden et al., NAACL 2009
Liang et al., EMNLP 2007; Johnson et al., NIPS 2007; Cohen et al., NIPS 2008, NAACL 2009
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Ambiguity measure using posteriors:

Intuition: True # of unique parent tags for a child tag is small
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Measuring ambiguity on distributions over trees

For a distribution py(y | x) instead of gold trees:
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Measuring ambiguity on distributions over trees
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Minimizing ambiguity through posterior regularization

E-Step q'(v|x) = e T)m KL(q || por)
q(ylx
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E-Step  g(y | x) = argmin KL(q || ps:)
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Minimizing ambiguity through posterior regularization

Apply E-step penalty L., on posteriors g(y | x) to induce sparsity
(Graca et al., NIPS 2007 & 2009)

E-Step  ¢'(y | x) =argminKL(q || ppr) + oLi/(gly | x))
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Experimental results

m English from Penn Treebank: state-of-the-art accuracy

Learning Method Accuracy

<10 <20 | all
PR (o = 140) 62.1 53.8 | 49.1
LN families 59.3 45.1 | 39.0
SLN TieV & N 61.3 474 | 414
PR (o =140, A =1/3) 64.4 55.2 | 50.5
DD (o =1, A learned) | 65.0 (£5.7)
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m 11 other languages from CoNLL-X:

m Dirichlet prior baseline: 1.5% average gain over EM
m Posterior regularization: 6.5% average gain over EM

m Come see the poster for more details
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