Sparsity in Dependency Grammar Induction

Jennifer Gillenwater¹ Kuzman Ganchev¹ João Graça² Ben Taskar¹ Fernando Pereira³

> ¹Computer & Information Science University of Pennsylvania

 $^2\mathsf{L}^2\mathsf{F}$ INESC-ID, Lisboa, Portugal

³Google, Inc.

July 12, 2010

A generative dependency parsing model

- A generative dependency parsing model
- The ambiguity problem this model faces

- A generative dependency parsing model
- The ambiguity problem this model faces
- Previous attempts to reduce ambiguity

- A generative dependency parsing model
- The ambiguity problem this model faces
- Previous attempts to reduce ambiguity
- How posteriors provide a good measure of ambiguity

- A generative dependency parsing model
- The ambiguity problem this model faces
- Previous attempts to reduce ambiguity
- How posteriors provide a good measure of ambiguity
- Applying posterior regularization to the likelihood objective

- A generative dependency parsing model
- The ambiguity problem this model faces
- Previous attempts to reduce ambiguity
- How posteriors provide a good measure of ambiguity
- Applying posterior regularization to the likelihood objective
- Success with respect to EM and parameter prior baselines

Dependency model with valence

(Klein and Manning, ACL 2004)

y x N Regularization

V creates

ADJ sparse

N grammars

$$p_{\theta}(\mathbf{x}, \mathbf{y}) = \theta_{root(V)}$$

Dependency model with valence

(Klein and Manning, ACL 2004)

$$p_{\theta}(\mathbf{x}, \mathbf{y}) = \theta_{root(V)}$$
$$\cdot \theta_{stop(nostop|V, right, false)} \cdot \theta_{child(N|V, right)}$$

Dependency model with valence

(Klein and Manning, ACL 2004)

$$\begin{aligned} p_{\theta}(\mathbf{x}, \mathbf{y}) &= \theta_{root(V)} \\ \cdot \theta_{stop(nostop|V, right, false)} \cdot \theta_{child(N|V, right)} \\ \cdot \theta_{stop(stop|V, right, true)} \cdot \theta_{stop(nostop|V, left, false)} \cdot \theta_{child(N|V, left)} \\ &\cdots \end{aligned}$$

Traditional objective optimization

■ Traditional objective: marginal log likelihood

$$\max_{\theta} \mathcal{L}(\theta) = E_X[\log p_{\theta}(\mathbf{x})] = E_X[\log \sum_{\mathbf{y}} p_{\theta}(\mathbf{x}, \mathbf{y})]$$

Traditional objective optimization

■ Traditional objective: marginal log likelihood

$$\max_{\theta} \mathcal{L}(\theta) = E_X[\log p_{\theta}(\mathbf{x})] = E_X[\log \sum_{\mathbf{y}} p_{\theta}(\mathbf{x}, \mathbf{y})]$$

Optimization method: expectation maximization (EM)

Traditional objective optimization

■ Traditional objective: marginal log likelihood

$$\max_{\theta} \mathcal{L}(\theta) = E_X[\log p_{\theta}(\mathbf{x})] = E_X[\log \sum_{\mathbf{y}} p_{\theta}(\mathbf{x}, \mathbf{y})]$$

- Optimization method: expectation maximization (EM)
- Problem: EM may learn a very ambiguous grammar
 - Too many non-zero probabilities
 - Ex: V \rightarrow N should have non-zero probability, but V \rightarrow DET, V \rightarrow JJ, V \rightarrow PRP\$, etc. should be 0

Previous approaches to improving performance

Structural annealing¹

- 1 Smith and Eisner, ACL 2006
- 2 Headden et al., NAACL 2009
- 3 Liang et al., EMNLP 2007; Johnson et al., NIPS 2007; Cohen et al., NIPS 2008, NAACL 2009

Previous approaches to improving performance

- Structural annealing¹
- $\mathcal{L}(\theta')$: Model extension²

- 1 Smith and Eisner, ACL 2006
- 2 Headden et al., NAACL 2009
- 3 Liang et al., EMNLP 2007; Johnson et al., NIPS 2007; Cohen et al., NIPS 2008, NAACL 2009

Previous approaches to improving performance

- Structural annealing¹
- $\mathcal{L}(\theta')$: Model extension²
- $\mathcal{L}(\theta) + \log p(\theta)$: Parameter regularization³
 - Tend to reduce unique # of children per parent, rather than directly reducing # of unique parent-child pairs
 - \bullet $\theta_{child(Y|X,dir)} \neq posterior(X \rightarrow Y)$

- 1 Smith and Eisner, ACL 2006
- 2 Headden et al., NAACL 2009
- 3 Liang et al., EMNLP 2007; Johnson et al., NIPS 2007; Cohen et al., NIPS 2008, NAACL 2009

Intuition: True # of unique parent tags for a child tag is small

For a distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ instead of gold trees:

Minimizing ambiguity through posterior regularization

E-Step
$$q^t(\mathbf{y} \mid \mathbf{x}) = \underset{q(\mathbf{y} \mid \mathbf{x})}{\operatorname{arg \, min}} \mathit{KL}(q \parallel p_{\theta^t})$$

Minimizing ambiguity through posterior regularization

$$\textbf{E-Step} \qquad q^t(\mathbf{y} \mid \mathbf{x}) = \argmin_{q(\mathbf{y} \mid \mathbf{x})} \mathit{KL}(q \parallel p_{\theta^t})$$

$$q(\mathbf{y} \mid \mathbf{x}) = \begin{array}{cccc} & & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

parent

Minimizing ambiguity through posterior regularization

Apply E-step penalty $L_{1/\infty}$ on posteriors $q(y \mid x)$ to induce sparsity (Graca et al., NIPS 2007 & 2009)

$$\textbf{E-Step} \quad q^t(\mathbf{y} \mid \mathbf{x}) = \operatorname*{arg\,min}_{q(\mathbf{y} \mid \mathbf{x})} \mathsf{KL}(q \parallel p_{\theta^t}) \ + \sigma L_{1/\infty}(q(\mathbf{y} \mid \mathbf{x}))$$

Experimental results

■ English from Penn Treebank: state-of-the-art accuracy

Learning Method	Accuracy		
	≤ 10	≤ 20	all
$PR\;(\sigma=140)$	62.1	53.8	49.1
LN families	59.3	45.1	39.0
SLN TieV & N	61.3	47.4	41.4
PR ($\sigma = 140$, $\lambda = 1/3$)	64.4	55.2	50.5
DD ($\alpha = 1$, λ learned)	65.0 (±5.7)		

Experimental results

■ English from Penn Treebank: state-of-the-art accuracy

Learning Method	Accuracy		
	≤ 10	≤ 20	all
$PR\;(\sigma=140)$	62.1	53.8	49.1
LN families	59.3	45.1	39.0
SLN TieV & N	61.3	47.4	41.4
PR ($\sigma=140$, $\lambda=1/3$)	64.4	55.2	50.5
DD ($lpha=1$, λ learned)	65.0 (±5.7)		

- 11 other languages from CoNLL-X:
 - Dirichlet prior baseline: 1.5% average gain over EM
 - Posterior regularization: 6.5% average gain over EM

Experimental results

■ English from Penn Treebank: state-of-the-art accuracy

Learning Method	Accuracy		
	≤ 10	≤ 20	all
$PR\;(\sigma=140)$	62.1	53.8	49.1
LN families	59.3	45.1	39.0
SLN TieV & N	61.3	47.4	41.4
PR ($\sigma=140$, $\lambda=1/3$)	64.4	55.2	50.5
DD ($lpha=1$, λ learned)	65.0 (±5.7)		

- 11 other languages from CoNLL-X:
 - Dirichlet prior baseline: 1.5% average gain over EM
 - Posterior regularization: 6.5% average gain over EM
- Come see the poster for more details

