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Outline

A generative dependency parsing model

The ambiguity problem this model faces

Previous attempts to reduce ambiguity

How posteriors provide a good measure of ambiguity

Applying posterior regularization to the likelihood objective

Success with respect to EM and parameter prior baselines
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Dependency model with valence

(Klein and Manning, ACL 2004)
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grammars
N

pθ(x, y) = θroot(V )

·θstop(nostop|V ,right,false) · θchild(N|V ,right)

·θstop(stop|V ,right,true) · θstop(nostop|V ,left,false) · θchild(N|V ,left)
. . .
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Traditional objective optimization

Traditional objective: marginal log likelihood

max
θ
L(θ) = EX [log pθ(x)] = EX [log

∑
y

pθ(x, y)]

Optimization method: expectation maximization (EM)

Problem: EM may learn a very ambiguous grammar

Too many non-zero probabilities
Ex: V→ N should have non-zero probability,
but V→ DET, V→ JJ, V→ PRP$, etc. should be 0
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Previous approaches to improving performance

Structural annealing1

L(θ′): Model extension2

L(θ) + log p(θ): Parameter regularization3

Tend to reduce unique # of children per parent, rather than
directly reducing # of unique parent-child pairs
θchild(Y |X ,dir) 6= posterior(X→Y )

1 Smith and Eisner, ACL 2006

2 Headden et al., NAACL 2009

3 Liang et al., EMNLP 2007; Johnson et al., NIPS 2007; Cohen et al., NIPS 2008, NAACL 2009
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Ambiguity measure using posteriors: L1/∞

Intuition: True # of unique parent tags for a child tag is small
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Measuring ambiguity on distributions over trees

For a distribution pθ(y | x) instead of gold trees:
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Minimizing ambiguity through posterior regularization

Apply E-step penalty L1/∞ on posteriors q(y | x) to induce sparsity
(Graca et al., NIPS 2007 & 2009)

E-Step qt(y | x) = arg min
q(y|x)

KL(q ‖ pθt )

+ σL1/∞(q(y | x))

q(y | x) = D N V Np t x t
q(root→ xi )

parent
D N V N

ch
ild

D p v p v
N p r
V p p p p
N r p

q(xi → xj)

Probabilityr s t→
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Experimental results

English from Penn Treebank: state-of-the-art accuracy

Learning Method Accuracy

≤ 10 ≤ 20 all

PR (σ = 140) 62.1 53.8 49.1
LN families 59.3 45.1 39.0

SLN TieV & N 61.3 47.4 41.4

PR (σ = 140, λ = 1/3) 64.4 55.2 50.5

DD (α = 1, λ learned) 65.0 (±5.7)

11 other languages from CoNLL-X:

Dirichlet prior baseline: 1.5% average gain over EM
Posterior regularization: 6.5% average gain over EM

Come see the poster for more details
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